Description

很久很久以前,有一只神犇叫yzy;

很久很久之后,有一只蒟蒻叫lty;

Input

请你读入一个整数N;1<=N<=1E9,A、B模1E9+7;

Output

请你输出一个整数A=\sum_{i=1}^N{\mu (i^2)};

请你输出一个整数B=\sum_{i=1}^N{\varphi (i^2)};

Sample Input

1

Sample Output

1

1

Solution

完全不知道第一问是用来干嘛的。。。。反正都是1

第二问,显然,\(\varphi(i^2)=i\times\varphi(i)\)

于是就是求,\(\sum_{i=1}^ni\times\varphi(i)\)

套用杜教筛的式子,\(h=f*g\) ,在 \(f*g\) 中,\(\sum_{d|n}d\times\varphi(d)\times g(\frac{n}{d})\)

一种想法是试着把 \(\frac{n}{d}\) 给去掉,那么尝试着将 \(g\) 定为 \(id\)

那么 \(f*g\) 就变成了 \(n\sum_{d|n}\varphi(d)=n^2\)

带回杜教筛最后的那个式子,得到,\(S(n)=\sum_{i=1}i^2-\sum_{i=2}^niS(\lfloor\frac{n}{i}\rfloor)\)

杜教筛求就好了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=10000000+10,Mod=1e9+7;
int n,vis[MAXN],prime[MAXN],cnt,phi[MAXN];
ll s[MAXN],inv6;
std::map<int,ll> M;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void init()
{
memset(vis,1,sizeof(vis));
vis[0]=vis[1]=0;
phi[1]=1;
for(register int i=2;i<MAXN;++i)
{
if(vis[i])
{
prime[++cnt]=i;
phi[i]=i-1;
}
for(register int j=1;j<=cnt&&i*prime[j]<MAXN;++j)
{
vis[i*prime[j]]=0;
if(i%prime[j])phi[i*prime[j]]=phi[i]*phi[prime[j]];
else
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
}
}
for(register int i=1;i<MAXN;++i)s[i]=(s[i-1]+1ll*i*phi[i]%Mod)%Mod;
}
inline ll qexp(ll a,ll b)
{
ll res=1;
while(b)
{
if(b&1)res=res*a%Mod;
a=a*a%Mod;
b>>=1;
}
return res;
}
inline ll S(int x)
{
if(x<MAXN)return s[x];
if(M.find(x)!=M.end())return M[x];
ll res=0;
for(register int i=2;;)
{
if(i>x)break;
int j=x/(x/i);
(res+=(1ll*(i+j)*(j-i+1)/2)%Mod*S(x/i)%Mod)%=Mod;
i=j+1;
}
return (1ll*x*(x+1)%Mod*(2*x+1)%Mod*inv6%Mod-res+Mod)%Mod;
}
int main()
{
read(n);init();inv6=qexp(6,Mod-2);
printf("1\n%lld\n",S(n));
return 0;
}

【刷题】BZOJ 4916 神犇和蒟蒻的更多相关文章

  1. [BZOJ 4916]神犇和蒟蒻

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  2. bzoj 4916: 神犇和蒟蒻【欧拉函数+莫比乌斯函数+杜教筛】

    居然扒到了学长出的题 和3944差不多(?),虽然一眼看上去很可怕但是仔细观察发现,对于mu来讲,答案永远是1(对于带平方的,mu值为0,1除外),然后根据欧拉筛的原理,\( \sum_{i=1}^{ ...

  3. bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)

    题目大意: 读入n. 第一行输出“1”(不带引号). 第二行输出$\sum_{i=1}^n i\phi(i)$. 题解: 所以说那个$\sum\mu$是在开玩笑么=.= 设$f(n)=n\phi(n) ...

  4. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  5. 【BZOJ4916】神犇和蒟蒻(杜教筛)

    [BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...

  6. 【BZOJ4916】神犇和蒟蒻 解题报告

    [BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...

  7. 【BZOJ4916】神犇与蒟蒻

    题面 Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;\(1<=N<=10^9\),A.B模\(10^9+7 ...

  8. BZOJ4916: 神犇和蒟蒻【杜教筛】

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  9. BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】

    题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...

随机推荐

  1. VBA读取、增加自定义和修改文档属性

    读取系统文档属性 Sub read()On Error Resume Nextrw = 1Worksheets(1).ActivateFor Each p In ActiveWorkbook.Buil ...

  2. maven使用出现的错误

    修改mvn archetype:create  改成mvn archetype:generate 刚开始学习用Maven, 装好了以后生成一个新的project mvnarchetype:genera ...

  3. C# WPF xml序列化 反序列化

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.W ...

  4. 20155204《网络对抗》Exp7 网络欺诈防范

    20155204<网络对抗>Exp7 网络欺诈防范 一.基础问题回答 1.通常在什么场景下容易受到DNS spoof攻击 在不安全的网络环境下访问网站. 2.在日常生活工作中如何防范以上两 ...

  5. HW 2017 12 17可禾大佬神题

    好不容易搞来的题目,不写一写怎么行呢. 不过难度真心不高(一小时K掉),都是老题+暴力题,没有欧洲玄学. 再说一句,这试卷是叶可禾出的吧. T1 好老的题目,看到有多组数据我还怕了,以为有更流弊的算法 ...

  6. 阿里云Redis外网转发访问

    1.前提条件 如果您需要从本地 PC 端访问 Redis 实例进行数据操作,可以通过在 ECS 上配置端口映射或者端口转发实现.但必须符合以下前提条件: 若 Redis 实例属于专有网络(VPC),E ...

  7. Node总结 模块机制

    1. Node中的模块分为两类.一个是node提供的模块,称为核心模块,如http, fs, path:另一类是用户编写的模块,称为文件模块. 2. require()方法接收一个标识符进行模块查找. ...

  8. Js_cookie保存登录名

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <html> <head ...

  9. git常用命令学习总结

    英语真是我的硬伤啊,提示都要用百度翻译看一遍,费劲... 下面是我日常工作中遇到的各种问题汇总 1.远程服务器分支与本地代码合并 我第一次打出 git pull 显示下面的错误 就怪我英语太差,都懒得 ...

  10. .net转PHP从零开始-配置visual studio 2013 PHP开发环境php for visual studio

    作为一个.net开发者,一直在visual studio这款强大的编辑器宠爱下,其他编辑器都不会用,也用着不熟练.最近这不是转php吗,使用php编辑器很不爽,觉得还是用visual studio舒服 ...