描述

Ignatius bought a land last week, but he didn't know the area of the land because the land is enclosed by a parabola and a straight line. The picture below shows the area. Now given all the intersectant points shows in the picture, can you tell Ignatius the area of the land?

Note: The point P1 in the picture is a random point on the parabola, and
P2, P3 are the intersectant points. Any two points of P1, P2 and P3 are
not coincidence each other.

输入

The
input contains several test cases. The first line of the input is a
single integer T which is the number of test cases. T test cases follow.
Each test case contains three intersectant points which shows in the
picture, they are given in the order of P1, P2, P3. Each point is
described by two floating-point numbers X and Y(0.0<=X,Y<=1000.0).

输出

For each test case, you should output the area of the land, the result should be rounded to 2 decimal places.

样例输入

2
5.000000 5.000000
0.000000 0.000000
10.000000 0.000000
10.000000 10.000000
1.000000 1.000000
14.000000 8.222222

样例输出

33.33
40.69

提示

For float may be not accurate enough, please use double instead of float.

题意

题意很简单,给你抛物线上三个点,p2和p3是线上的点,保证三点不共线,求上图红线画出的面积

题解

抛物线设y=ax^2+bx+c,把三个点代入公式,化简可得a,b,c

直线设y=a1x+b1,a1为斜率,易得b1

然后求积分∫(x2,x3)  ax2+bx+c-a1x-b1

可得[1/3*ax3+1/2*bx2+cx-1/2*a1x2-b1x](x2,x3)  ==  [1/3*ax33+1/2*bx32+cx3-1/2*a1x32-b1x3]-[1/3*ax23+1/2*bx22+cx2-1/2*a1x22-b1x2] 即为答案

代码

 #include<bits/stdc++.h>
using namespace std; int main()
{
int T;
scanf("%d",&T);
while(T--)
{
double x1,y1,x2,y2,x3,y3,a1,b1,a,b,c,ans;
scanf("%lf%lf%lf%lf%lf%lf",&x1,&y1,&x2,&y2,&x3,&y3);
a1=(y3-y2)/(x3-x2);
b1=y3-a1*x3;
a=((y3-y1)-a1*(x3-x1))/((x3*x3-x1*x1)-(x3+x2)*(x3-x1));
b=((y3-y2)-a*(x3*x3-x2*x2))/(x3-x2);
c=y3-a*x3*x3-b*x3;
ans=((1.0/)*a*x3*x3*x3+0.5*(b-a1)*x3*x3+(c-b1)*x3)-((1.0/)*a*x2*x2*x2+0.5*(b-a1)*x2*x2+(c-b1)*x2);
printf("%.2f\n",ans);
}
return ;
}

TZOJ 1210 The area(微积分)的更多相关文章

  1. HDU 1071 The area ——微积分

    [题目分析] 求二次函数和一次函数围成的面积. 先解方程求出一次函数和二次函数. 然后积分. 现在还是不会积分. [代码] #include <cstdio> #include <c ...

  2. 转载:hdu 题目分类 (侵删)

    转载:from http://blog.csdn.net/qq_28236309/article/details/47818349 基础题:1000.1001.1004.1005.1008.1012. ...

  3. 杭电ACM分类

    杭电ACM分类: 1001 整数求和 水题1002 C语言实验题——两个数比较 水题1003 1.2.3.4.5... 简单题1004 渊子赛马 排序+贪心的方法归并1005 Hero In Maze ...

  4. The area (hdu1071)积分求面积

    The area Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  5. [LeetCode] 850. Rectangle Area II 矩形面积之二

    We are given a list of (axis-aligned) rectangles.  Each rectangle[i] = [x1, y1, x2, y2] , where (x1, ...

  6. [LeetCode] 892. Surface Area of 3D Shapes 三维物体的表面积

    On a N * N grid, we place some 1 * 1 * 1 cubes. Each value v = grid[i][j] represents a tower of v cu ...

  7. [LeetCode] 883. Projection Area of 3D Shapes 三维物体的投影面积

    On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x, y, and z axes. Each ...

  8. [ZJU 1010] Area

    ZOJ Problem Set - 1010 Area Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Jer ...

  9. [转]NopCommerce How to add a menu item into the administration area from a plugin

    本文转自:http://docs.nopcommerce.com/display/nc/How+to+code+my+own+shipping+rate+computation+method Go t ...

随机推荐

  1. Proftpd 服务器安装配置

    yum install proftpd 如果提示没有找到源 rpm -iUvh http://dl.fedoraproject.org/pub/epel/6/x86_64/epel-release-6 ...

  2. day30-模块和包

    一.模块介绍 1.什么是模块 在python中,一个函数封装一个功能,当一个文件中包含很多个函数,而我们在其他程序中经常会用到这个文件中的功能时,那么我们就可以将这个包含多个函数的文件封装成一个模块, ...

  3. Zookpeer集群节点

    Adaptive Communication Environment(自适配通信环境),简称ACE. reference artfile:zookeeper单节点与集群的安装https://blog. ...

  4. JavaScript的 onclick 事件是如何调用jquery 方法的

    看见个不错的问答,关于JavaScript的 onclick 事件是如何调用jquery 方法的,特此标注,链接如下:http://segmentfault.com/q/101000000033350 ...

  5. 原生java读取存储为xml格式的数据,并存储到java bean里

    一.举例读取的文件为:X-bond可交易债券信息_20180917.xml <?xml version="1.0" encoding="UTF-8"?&g ...

  6. LeetCode题解:Flatten Binary Tree to Linked List:别人的递归!

    总是在看完别人的代码之后,才发现自己的差距! 我的递归: 先把左侧扁平化,再把右侧扁平化. 然后找到左侧最后一个节点,把右侧移动过去. 然后把左侧整体移到右侧,左侧置为空. 很复杂吧! 如果节点很长的 ...

  7. 基于官方镜像MySQL做自定义业务扩充镜像

    转自:https://www.cnblogs.com/jsonhc/p/7809571.html 首先从https://hub.docker.com/_/mysql/拉取官方镜像,如果速度缓慢,建议添 ...

  8. Java面试题_简答题

    作为一个大三在校生,很快就要去实习了,但总感觉自己连一个刚入门的菜鸟都不如,哎.发现自己连那个程序员的门槛都还没进,有点小伤心,不过伤心没用,努力向前才是我们现在应该做的事情. 下面是我之前在学校所从 ...

  9. 做好Unity4.x开发项目规划

    1. 是否要用lua 2. (对于需操作的游戏)客户端游戏如何做战斗验证 下面列举小坑吧.不建议都绕开,毕竟没有那么多时间做前期调研的. 对应版本Unity4.x 1. 客户端程序层面 总的来说C#超 ...

  10. Ros系列_学习一

    刚入门ROS,不,没入门,还在门口,这是今天的总结: (一)创建一个工作空间 1.创建一个初始工作空间: mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src cat ...