Calculate CAN bit timing parameters

Calculate CAN bit timing parameters

typedef struct
{
//char name[ 16 ]; // Name of the CAN controller hardware
//uint32_t ref_clk; // CAN system clock frequency in Hz
//uint32_t sjw_max; // Synchronisation jump width
uint32_t brp_min; // Bit-rate prescaler
uint32_t brp_max;
uint32_t brp_inc;
uint32_t tseg1_min; // Time segement 1 = prop_seg + phase_seg1
uint32_t tseg1_max;
uint32_t tseg2_min; // Time segement 2 = phase_seg2
uint32_t tseg2_max;
} CAN_BitTimingConst_TypeDef; typedef struct
{
uint32_t ref_clk; // CAN system clock frequency in Hz
uint32_t bitrate; // Bit-rate in bits/second
uint32_t sample_point; // Sample point in one-tenth of a percent
uint32_t brp; // Bit-rate prescaler
uint32_t tq; // Time quanta (TQ) in nanoseconds
uint32_t tseg1; // Time segement 1 = prop_seg + phase_seg1
uint32_t tseg2; // Time segement 2 = phase_seg2
uint32_t sjw; // Synchronisation jump width in TQs
//uint32_t prop_seg; // Propagation segment in TQs
//uint32_t phase_seg1; // Phase buffer segment 1 in TQs
//uint32_t phase_seg2; // Phase buffer segment 2 in TQs
} CAN_BitTiming_TypeDef;
#define CAN_CALC_MAX_ERROR 50   // in one-tenth of a percent

int32_t CAN_UpdateSamplePoint( CAN_BitTimingConst_TypeDef *btc,
int32_t sampl_pt, int32_t tseg, int32_t *tseg1, int32_t *tseg2 )
{
*tseg2 = tseg + - ( sampl_pt * ( tseg + ) ) / ; if ( *tseg2 < btc->tseg2_min )
*tseg2 = btc->tseg2_min; if ( *tseg2 > btc->tseg2_max )
*tseg2 = btc->tseg2_max; *tseg1 = tseg - *tseg2; if ( *tseg1 > btc->tseg1_max )
{
*tseg1 = btc->tseg1_max;
*tseg2 = tseg - *tseg1;
} return * ( tseg + - *tseg2 ) / ( tseg + );
} // CIA Sample Point : 75.0% : Speed > 800000
// CIA Sample Point : 80.0% : Speed > 500000
// CIA Sample Point : 87.5% : Speed <= 500000
uint32_t CAN_CIA_SamplePoint( uint32_t bitrate )
{
uint32_t sampl_pt; if ( bitrate > )
sampl_pt = ;
else if ( bitrate > )
sampl_pt = ;
else
sampl_pt = ; return sampl_pt;
} int32_t CAN_CalcBitTiming( CAN_BitTimingConst_TypeDef *btc,
CAN_BitTiming_TypeDef *bt )
{
uint64_t v64;
int32_t rate = ;
int32_t best_error = , error = ;
int32_t best_tseg = , best_brp = , brp = ;
int32_t tsegall, tseg = , tseg1 = , tseg2 = ;
int32_t spt_error = , spt = , sampl_pt; // Use gived sample points
if ( bt->sample_point )
sampl_pt = bt->sample_point;
else
// Use CIA recommended sample points
sampl_pt = CAN_CIA_SamplePoint( bt->bitrate ); // tseg even = round down, odd = round up
for ( tseg = ( btc->tseg1_max + btc->tseg2_max ) * + ;
tseg >= ( btc->tseg1_min + btc->tseg2_min ) * ; tseg-- )
{
tsegall = + tseg / ; // Compute all possible tseg choices (tseg=tseg1+tseg2)
brp = bt->ref_clk / ( tsegall * bt->bitrate ) + tseg % ; // chose brp step which is possible in system
brp = ( brp / btc->brp_inc ) * btc->brp_inc;
if ( ( brp < btc->brp_min ) || ( brp > btc->brp_max ) )
continue; rate = bt->ref_clk / ( brp * tsegall );
error = bt->bitrate - rate; // tseg brp biterror
if ( error < )
error = -error; if ( error > best_error )
continue; best_error = error;
if ( error == )
{
spt = CAN_UpdateSamplePoint( btc, sampl_pt, tseg / , &tseg1, &tseg2 );
error = sampl_pt - spt;
if ( error < )
error = -error;
if ( error > spt_error )
continue; spt_error = error;
} best_tseg = tseg / ;
best_brp = brp;
if ( error == )
break;
} if ( best_error )
{
/* Error in one-tenth of a percent */
error = ( best_error * ) / bt->bitrate;
if ( error > CAN_CALC_MAX_ERROR )
{
// error ( "bitrate error %ld.%ld%% too high\n", error / 10, error % 10 );
return DRIVER_ERROR_PARAMETER;
}
else
{
// warn( "bitrate error %ld.%ld%%\n", error / 10, error % 10 );
}
} v64 = ( (uint64_t) best_brp * 1000000000UL ) / bt->ref_clk; bt->tq = (uint32_t) v64;
bt->brp = best_brp;
bt->tseg2 = tseg2;
bt->tseg1 = tseg1;
bt->sjw = ;
// bt->prop_seg = tseg1 / 2;
// bt->phase_seg1 = tseg1 - bt->prop_seg;
// bt->phase_seg2 = tseg2; // real bit-rate
bt->bitrate = bt->ref_clk / ( bt->brp * ( tseg1 + tseg2 + ) );
// real sample point bt->sample_point = CAN_UpdateSamplePoint( btc, sampl_pt, best_tseg, &tseg1,
&tseg2 ); return DRIVER_OK;
}

SJW[1:0]: Resynchronization jump width
These bits define the maximum number of time quanta the CAN hardware 
is allowed to lengthen or shorten a bit to perform the resynchronization.
tRJW = tq x (SJW[1:0] + 1)

TS2[2:0]: Time segment 2
These bits define the number of time quanta in Time Segment 2.
tBS2 = tq x (TS2[2:0] + 1)

TS1[3:0]: Time segment 1
These bits define the number of time quanta in Time Segment 1
tBS1 = tq x (TS1[3:0] + 1)

BRP[9:0]: Baud rate prescaler
These bits define the length of a time quanta.
tq = (BRP[9:0]+1) x tPCLK

const CAN_BitTimingConst_TypeDef CAN_BitTimingConst =
{ , // Bit-rate prescaler Min
, // Bit-rate prescaler Max
, // Bit-rate prescaler Inc
, // Time segement 1 = prop_seg + phase_seg1 Min
, // Time segement 1 = prop_seg + phase_seg1 Max
, // Time segement 2 = phase_seg2 Min
, // Time segement 2 = phase_seg2 Max
}; static int32_t CAN_SetSpeed( CAN_Controller_TypeDef *can, uint32_t speed )
{
int32_t RetValue = CAN_EnterInit( can );
if ( RetValue != DRIVER_OK )
return RetValue; uint32_t Freq = can->freq( );
CAN_BitTiming_TypeDef CAN_BitTiming;
CAN_BitTiming.ref_clk = Freq;
CAN_BitTiming.bitrate = speed; // be updated to real speed
CAN_BitTiming.sample_point = 0; // be updated to real spt RetValue = CAN_CalcBitTiming( &CAN_BitTimingConst, &CAN_BitTiming );
if ( RetValue == DRIVER_OK )
{
can->info->speed = CAN_BitTiming.bitrate; // updated
uint32_t BTR = can->reg->BTR & 0xC0000000; // SILM|LBKM
BTR |= ( ( CAN_BitTiming.brp - ) << ) // BRP
| ( ( CAN_BitTiming.tseg1 ) << ) // TS1
| ( ( CAN_BitTiming.tseg2 - ) << ) // TS2
| ( ( CAN_BitTiming.sjw - ) << ); // SJW
can->reg->BTR = BTR;
} return CAN_LeaveInit( can );
/*                           BPR TSEG1 TSEG2 */
/* 36 MHz 1 Mbps */ { , , }, // 75%
/* 36 MHz 800 Kbps */ { , , }, // 80%
/* 36 MHz 500 Kbps */ { , , }, // 83.3%
/* 36 MHz 250 Kbps */ { , , }, // 87.5%
/* 36 MHz 125 Kbps */ {, , }, // 87.5%
/* 36 MHz 100 Kbps */ {, , }, // 86.6%
/* 36 MHz 83.3 Kbps */ {, , }, // 83.3%
/* 36 MHz 62.5 Kbps */ {, , }, // 87.5%
/* 36 MHz 50 Kbps */ {, , }, // 87.5%
/* 36 MHz 20 Kbps */ {,, }, // 86.6%
/* 36 MHz 10 Kbps */ {,, }, // 87.5%
/* 36 MHz 500 Kbps */ { , , } // 83.3%

Calculate CAN bit timing parameters -- STM32的更多相关文章

  1. Calculate CAN bit timing parameters

    Calculate CAN bit timing parameters TSYNC_SEG === 1 TSEG1 = Prop_Seg + Phase_Seg1 TSEG2 = Phase_Seg2 ...

  2. 0xWS2812 STM32 driver for WS2812(B) RGB LEDs

    0xWS2812 STM32 driver for WS2812(B) RGB LEDs 0xWS2812 pronounced "hex-WS2812" This code ai ...

  3. CRT/LCD/VGA Information and Timing

    彩色阴极射线管的剖面图: 1. 电子QIANG Three Electron guns (for red, green, and blue phosphor dots)2. 电子束 Electron ...

  4. CRT/LCD/VGA Information and Timing【转】

    转自:http://www.cnblogs.com/shangdawei/p/4760933.html 彩色阴极射线管的剖面图: 1. 电子QIANG Three Electron guns (for ...

  5. CALayer之 customizing timing of an animation

    customizing timing of an animation Timing is an important part of animations, and with Core Animatio ...

  6. RFID 读写器 Reader Writer Cloner

    RFID读写器的工作原理 RFID的数据采集以读写器为主导,RFID读写器是一种通过无线通信,实现对标签识别和内存数据的读出和写入操作的装置. 读写器又称为阅读器或读头(Reader).查询器(Int ...

  7. RFID Reader 线路图收集

    This 125 kHz RFID reader http://www.serasidis.gr/circuits/RFID_reader/125kHz_RFID_reader.htm http:// ...

  8. BlackArch-Tools

    BlackArch-Tools 简介 安装在ArchLinux之上添加存储库从blackarch存储库安装工具替代安装方法BlackArch Linux Complete Tools List 简介 ...

  9. Timequest静态时序分析(STA)基础

    Setup Slack Hold Slack Recovery&Removal Recovery: The minimum time an asynchronous signal must b ...

随机推荐

  1. centos-7安装redis服务

    一.Redis下载 在centOS里通过wget下载redis wget http://download.redis.io/releases/redis-4.0.11.tar.gz  具体版本下载地址 ...

  2. TensorFlow 从零到helloWorld

    目录 1.git安装与使用 1.1 git安装 1.2 修改git bash默认路径 1.3 git常用操作 2.环境搭建   2.1 tensorflow安装   2.2 CUDA安装   2.3 ...

  3. 首发:极简的Centos主机监控方法,分分钟即可使用【转】

    需求天天有,今年事更多.硬盘测试刚刚完成,就又来了性能监控的需求.一般我们生产就用zabbix了,用起来还行,就是蛮多脚本要写.开发和测试都是分散的,经常还要重装系统,用zabbix就算了,开发和测试 ...

  4. springcloud中Feign配置详解

    Spring Cloud中Feign配置详解 到目前为止,小伙伴们对Feign的使用已经掌握的差不多了,我们在前文也提到Feign是对Ribbon和Hystrix的整合,那么在Feign中,我们要如何 ...

  5. 2012 Dhaka

    2012 Dhaka B - Wedding of Sultan 题目描述:给出一棵树的\(dfs\)序(只要经过就会记录),求每个点的度 solution 按\(dfs\)序的规则还原这棵树就好了. ...

  6. Authentication(Spring Security 认证笔记)

    这篇文章是对Spring Security的Authentication模块进行一个初步的概念了解,知道它是如何进行用户认证的 考虑一个大家比较熟悉的标准认证过程: 1.用户使用username和pa ...

  7. vue-simple-uploader上传插件

    基于vue-simple-uploader封装文件分片上传.秒传及断点续传的全局上传插件 https://www.cnblogs.com/xiahj/p/vue-simple-uploader.htm ...

  8. CSS 浮动和清除

    CSS 浮动和清除浮动 在写页面布局的过程中,浮动是大家经常用的属性.在好多的排版布局中都是用的的浮动比如说下面这些地方都是应用到了浮动. 在我学习浮动的时候可是熬坏了脑筋,在这里我分享一下我对浮动这 ...

  9. P1855 榨取kkksc03 二维费用背包

    Kkksc03的时间和金钱是有限的,所以他很难满足所有同学的愿望.所以他想知道在自己的能力范围内,最多可以完成多少同学的愿望? 输入输出格式 输入格式: 第一行,n M T,表示一共有n(n<= ...

  10. 如何快速切换Python运行版本,如何选择Python版本

    想必在学习Python时会面临选择Python2.X或者是Python3.X的问题. 我在电脑上不同位置下载安装了不同版本 的Python,当我在学习时,不管是需要哪一个版本才能运行都无所谓,相应的快 ...