BZOJ3601 一个人的数论
Description
定义
\[f_k(n)=\sum_{\substack{1\leq i\leq n\\gcd(i,n)=1}}i^k
\]给出\(n=\prod_{i=1}^w p_i^{a_i}\),求\(f_k(n)\)。\(1\leq w\leq 1000, 1\leq q_i,a_i\leq 10^9\)。保证\(p_i\)都为质数且互不相同。
Solution
令\(g_k(n)=\sum_{i=1}^ni^k\),则
g_k(n)&=\sum_{i=1}^ni^k\\
&=\sum_{d|n}\sum_{\substack{1\leq i\leq n\\gcd(i,n)=d}}i^k\\
&=\sum_{d|n}d^k\sum_{\substack{1\leq i\leq \frac nd\\gcd\left(i,\frac nd\right)=d}}i^k\\
&=\sum_{d|n}d^kf_k\left(\frac nd\right)
\end{aligned}
\]
也即\(g_k(n) = (n^k) * f_k(n)\)(\(*\)表示狄利克雷卷积)。
由于\((n^k)*(\mu(n)n^k)=[n=1]\),所以\(f_k(n)=(\mu(n)n^k)*g_k(n)\)。
显然\(g_k(n)\)可以写成\(\sum_{i=1}^{k+1}a_in^i\),那么
f_k(n)&=\sum_{d|n}\mu(d)d^k\sum_{i=1}^{k+1}a_i\left(\frac nd\right)^i\\
&=\sum_{i=1}^{k+1}a_i\sum_{d|n}\mu(d)d^k\left(\frac nd\right)^i\\
&=\sum_{i=1}^{k+1}a_in^i\sum_{d|n}\mu(d)d^{k-i}\\
\end{aligned}
\]
\(\sum_{d|n}\mu(d)d^{k-i}\)显然是积性函数,所以对每个质因子\(O(1)\)求出之后乘起来即可。
所有\(a_i\)提前高消出来就行了。
Code
#include <algorithm>
#include <cstdio>
#include <cstring>
const int D = 105;
const int mod = 1000000007;
typedef long long LL;
inline LL pow_mod(LL a, LL b) {
LL ans = 1;
for (a %= mod, (b += mod - 1) %= mod - 1; b; b >>= 1, a = a * a % mod)
if (b & 1) ans = ans * a % mod;
return ans;
}
inline LL inv(LL a) { return pow_mod(a, -1); }
int d;
LL a[D];
void solve() {
static LL A[D][D];
LL t = 0;
for (int i = 0; i <= d; ++i) {
LL j = 1;
for (int k = 0; k <= d; ++k) A[i][k] = j = j * (i + 1) % mod;
A[i][d + 1] = ((t += d ? A[i][d - 1] : 1) %= mod);
}
for (int i = 0; i <= d; ++i) {
int j = i;
while (!A[j][i]) ++j;
for (int k = i; k <= d + 1; ++k) std::swap(A[i][k], A[j][k]);
LL inv1 = inv(A[i][i]);
for (int j = i; j <= d + 1; ++j)
A[i][j] = A[i][j] * inv1 % mod;
for (int j = i + 1; j <= d; ++j)
for (int k = d + 1; k >= i; --k)
A[j][k] = (A[j][k] - A[j][i] * A[i][k] % mod) % mod;
}
for (int i = d; ~i; --i) {
a[i + 1] = A[i][d + 1];
for (int j = i - 1; ~j; --j)
A[j][d + 1] = (A[j][d + 1] - A[j][i] * A[i][d + 1] % mod) % mod;
}
}
const int N = 1050;
int p[N], q[N];
int main() {
int w;
scanf("%d%d", &d, &w);
solve();
LL ans = 0, n = 1;
for (int i = 0; i < w; ++i) {
scanf("%d%d", &p[i], &q[i]);
n = n * pow_mod(p[i], q[i]) % mod;
}
LL y = 1;
for (int i = 1; i <= d + 1; ++i) {
y = y * n % mod;
LL t = a[i] * y % mod;
for (int j = 0; j < w; ++j)
t = t * (1 - pow_mod(p[j], d - i)) % mod;
ans = (ans + t) % mod;
}
printf("%d\n", (int)((ans + mod) % mod));
return 0;
}
BZOJ3601 一个人的数论的更多相关文章
- BZOJ3601 一个人的数论 【数论 + 高斯消元】
题目链接 BZOJ3601 题解 挺神的 首先有 \[ \begin{aligned} f(n) &= \sum\limits_{x = 1}^{n} x^{d} [(x,n) = 1] \\ ...
- BZOJ3601 一个人的数论 莫比乌斯反演、高斯消元/拉格朗日插值
传送门 题面图片真是大到离谱-- 题目要求的是 \(\begin{align*}\sum\limits_{i=1}^N i^d[gcd(i,n) == 1] &= \sum\limits_{i ...
- BZOJ3601. 一个人的数论(狄利克雷卷积+高斯消元)及关于「前 $n$ 个正整数的 $k$ 次幂之和是关于 $n$ 的 $k+1$ 次多项式」的证明
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3601 题解 首先还是基本的推式子: \[\begin{aligned}f_d(n) &a ...
- [bzoj3601] 一个人的数论 [莫比乌斯反演+高斯消元]
题面 传送门 思路 这题妙啊 先把式子摆出来 $f_n(d)=\sum_{i=1}^n[gcd(i,n)==1]i^d$ 这个$gcd$看着碍眼,我们把它反演掉 $f_n(d)=\sum_{i=1}^ ...
- 【BZOJ3601】一个人的数论(数论)
[BZOJ3601]一个人的数论(数论) 题面 BZOJ 怎么这图片这么大啊... 题解 要求的是\(\displaystyle \sum_{i=1}^n [gcd(i,n)=1]i^d\) 然后把\ ...
- 【BZOJ3601】一个人的数论 高斯消元+莫比乌斯反演
[BZOJ3601]一个人的数论 题解:本题的做法还是很神的~ 那么g(n)如何求呢?显然它的常数项=0,我们可以用待定系数法,将n=1...d+1的情况代入式子中解方程,有d+1个方程和d+1个未知 ...
- 【bzoj3601】一个人的数论 莫比乌斯反演+莫比乌斯函数性质+高斯消元
Description Sol 这题好难啊QAQ 反正不看题解我对自然数幂求和那里是一点思路都没有qwq 先推出一个可做一点的式子: \(f(n)=\sum_{k=1}^{n}[(n,k)=1]k^d ...
- 【bzoj3601】一个人的数论 莫比乌斯反演+高斯消元
题目描述 题解 莫比乌斯反演+高斯消元 (前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替) #include <cstdio> #include <cstrin ...
- 【bzoj3601】一个人的数论(莫比乌斯反演+拉格朗日插值)
传送门 题意: 求\[ \sum_{i=1}^{n}i^d[gcd(i,n)=1] \] 思路: 我们对上面的式子进行变换,有: \[ \begin{aligned} &\sum_{i=1}^ ...
随机推荐
- python学习笔记12-深浅拷贝
以上为浅拷贝. .copy()函数 赋值:数据完全共享(=赋值是在内存中指向同一个对象,如果是可变(mutable)类型,比如列表,修改其中一个,另一个必定改变 如果是不可变类型(immutable) ...
- 在没有任何投票节点情况下将从节点转换为Primary节点脚本
cfg={ "_id": "rs01", "version": 2, "protocolVersion": Number ...
- Docker 镜像安装 GitLab 中文社区版
docker run \ --detach \ --publish : \ --publish : \ --name gitlab \ --restart unless-stopped \ --vol ...
- Linux 变量的使用
目录 1. Shell 脚本规范 2. Shell 脚本执行 3. Shell 脚本变量 3.1 环境变量 3.1.1 自定义环境变量 3.1.2 显示与取消环境变量 3.1.3 环境变量初始化与对应 ...
- MVC源码分析 - View
感觉好久没有学习了, 汗. 年就这么过完了, 感觉没有尝到过年的味道. 现在的年过的有些冷清了. 除了体重证明着我过了一个年, 还有一件值得开心的事情, 终于把女朋友变成未婚妻了. 这是一大进步吧. ...
- Qt5——从零开始的Hello World教程(Qt Creator)
简单Qt教程 一.打开Qt Creator 本次的目的是用Qt Creator建立一个Hello World项目,在安装Qt之后,首先要打开Qt Creator. 就是它啦,打开后会显示如下页面. 二 ...
- SpringBoot入门 (九) MQ使用
本文记录学习在Spring Boot中使用MQ. 一 什么是MQ MQ全称(Message Queue)又名消息队列,是一种异步通讯的中间件.它的作用类似于邮局,发信人(生产者)只需要将信(消息)交给 ...
- jdbc mysql driver 6.0.2
url = jdbc:mysql://localhost:3306/hibernate?useUnicode=true&characterEncoding=UTF-8&useLegac ...
- Spring-IOC注解
注解主要的目的就是实现零XML配置.一:自动扫描装配Bean. spring为我们引入了组件自动扫描机制,它可以在类路径底下寻找标注了@Component.@Service.@Controller.@ ...
- org.hibernate.NonUniqueObjectException:a different object with the same identifier value was alread
转自: http://blog.csdn.net/zzzz3621/article/details/9776539 看异常提示意思已经很明显了,是说主键不唯一,在事务的最后执行SQL时,session ...