题目链接

稳定婚姻问题:有n个男生n个女生,每个男/女生对每个女/男生有一个不同的喜爱程度。给每个人选择配偶。

若不存在 x,y未匹配,且x喜欢y胜过喜欢x当前的配偶,y喜欢x也胜过y当前的配偶 的完备匹配,则称这是一个稳定匹配。

稳定匹配一定存在,且存在一个\(O(n^2)\)的算法:

任选一个未匹配的男生x,按x的喜爱程度从大到小枚举每个女生,若当前女生没有配偶或喜欢x胜过喜欢当前配偶,则与x匹配。直到所有男生都匹配。

这一题我们用行表示男生,n个数表示女生。喜爱程度为:行更喜欢靠前的数,数更喜欢其出现位置靠后的行。

eg.如果x这一行靠后的一些数都被选过了,让它们喜欢x,要不产生矛盾则要x喜欢(选)尽量靠前的数。

复杂度\(O(nm)\)。

为何rank1这么容易。。

//107ms	2028kb
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 500000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=205,M=405; int A[N][M],pos[N][N],lk[N],ans[N];
std::queue<int> q;
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
} int main()
{
for(int T=read(),n,m; T--; )
{
n=read(), m=read();
for(int i=1; i<=n; ++i)
for(int j=1; j<=m; ++j)
pos[i][A[i][j]=read()]=j;
memset(lk,0,sizeof lk);
for(int i=1; i<=n; ++i) q.push(i);
while(!q.empty())
{
int x=q.front(); q.pop();
ans[x]=0;
for(int i=1,v; i<=m; ++i)
if(v=A[x][i])
{
if(!lk[v]) {lk[v]=x, ans[x]=v; break;}
else if(pos[x][v]>pos[lk[v]][v])
{
q.push(lk[v]), lk[v]=x, ans[x]=v;
break;
}
}
}
for(int i=1; i<=n; ++i) printf("%d ",ans[i]); putchar('\n');
}
return 0;
}

UOJ.41.[清华集训2014]矩阵变换(稳定婚姻)的更多相关文章

  1. [BZOJ3816][清华集训2014]矩阵变换(稳定婚姻问题)

    3816: 矩阵变换 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 803  Solved: 578[Submit][Status][Discuss] ...

  2. bzoj 3816&&uoj #41. [清华集训2014]矩阵变换

    稳定婚姻问题: 有n个男生,n个女生,所有女生在每个男生眼里有个排名,反之一样. 将男生和女生两两配对,保证不会出现婚姻不稳定的问题. 即A-1,B-2 而A更喜欢2,2更喜欢A. 算法流程: 每次男 ...

  3. uoj #46[清华集训2014]玄学

    uoj 因为询问是关于一段连续区间内的操作的,所以对操作构建线段树,这里每个点维护若干个不交的区间,每个区间\((l,r,a,b)\)表示区间\([l,r]\)内的数要变成\(ax+b\) 每次把新操 ...

  4. uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题

    [清华集训2014]矩阵变换 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...

  5. AC日记——【清华集训2014】奇数国 uoj 38

    #38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...

  6. [UOJ#274][清华集训2016]温暖会指引我们前行

    [UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...

  7. [UOJ 41]【清华集训2014】矩阵变换

    Description 给出一个 $N$ 行 $M$ 列的矩阵A, 保证满足以下性质: $M > N$. 矩阵中每个数都是 $[0, N]$ 中的自然数. 每行中, $[1, N]$ 中每个自然 ...

  8. 【BZOJ3816】【清华集训2014】矩阵变换 稳定婚姻问题

    题目描述 给出一个\(n\)行\(m\)列的矩阵\(A\), 保证满足以下性质: 1.\(m>n\). 2.矩阵中每个数都是\([0,n]\)中的自然数. 3.每行中,\([1,n]\)中每个自 ...

  9. [清华集训2015 Day2]矩阵变换-[稳定婚姻模型]

    Description 给出一个N行M列的矩阵,保证满足以下性质: M>N. 矩阵中每个数都是 [0,N]中的自然数. 每行中, [1,N]中每个自然数刚好出现一次,其余的都是0. 每列中,[1 ...

随机推荐

  1. Java基础-赋值运算符Assignment Operators与条件运算符Condition Operators

    Java基础-赋值运算符Assignment Operators与条件运算符Condition Operators 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.赋值运算符 表 ...

  2. 如何设置Ultraedit自动换行

    有时候这会非常麻烦, 要让Ultraedit自动换行请按发下方法: 1. 点击菜单栏的"高级→配置",找到"编辑器→自动换行/制表符设置". 2. 然后,把&q ...

  3. UVA 12307 Smallest Enclosing Rectangle

    https://vjudge.net/problem/UVA-12307 求覆盖所有点的最小矩形面积.周长 相当于求凸包的最小面积外接矩形.最小周长外接矩形 结论: 这个矩形一定有一条边和凸包上一条边 ...

  4. 在html5 canvas的destination-atop属性的一些奇怪的问题

    最近在整理canvas的时候发现HTML5 Canvas开发详解一个奇怪的属性解释 目标图形是显示在画布上的位图 而原图形是指要回执在画布上的形状 w3school上面是这样说的 destinatio ...

  5. [转] 解决RegexKitLite编译报错

    本文永久地址为http://www.cnblogs.com/ChenYilong/p/3984254.html ,转载请注明出处. 在编译RegexKitLite的时候,报错如下: Undefined ...

  6. 前端学PHP之正则表达式函数

    前面的话 正则表达式不能独立使用,它只是一种用来定义字符串的规则模式,必须在相应的正则表达式函数中应用,才能实现对字符串的匹配.查找.替换及分割等操作.前面介绍了正则表达式的基础语法,本文将详细介绍正 ...

  7. (叉积)B - Toy Storage POJ - 2398

    题目链接:https://cn.vjudge.net/contest/276358#problem/B 题目大意:和上一次写叉积的题目一样,就只是线不是按照顺序给的,是乱序的,然后输出的时候是按照有三 ...

  8. 基于Consul的数据库高可用架构【转】

    几个月没有更新博客了,已经长草了,特意来除草.本次主要分享如何利用consul来实现redis以及mysql的高可用.以前的公司mysql是单机单实例,高可用MHA加vip就能搞定,新公司mysql是 ...

  9. mysqldump只导出表结构或只导出数据的实现方法【转】

    mysql mysqldump 只导出表结构 不导出数据 mysqldump --opt -d 数据库名 -u root -p > xxx.sql 备份数据库 #mysqldump 数据库名 & ...

  10. SQL Server 连接池 (ADO.NET) MSDN

    连接到数据库服务器通常由几个需要很长时间的步骤组成. 必须建立物理通道(例如套接字或命名管道),必须与服务器进行初次握手,必须分析连接字符串信息,必须由服务器对连接进行身份验证,必须运行检查以便在当前 ...