UOJ.41.[清华集训2014]矩阵变换(稳定婚姻)
稳定婚姻问题:有n个男生n个女生,每个男/女生对每个女/男生有一个不同的喜爱程度。给每个人选择配偶。
若不存在 x,y未匹配,且x喜欢y胜过喜欢x当前的配偶,y喜欢x也胜过y当前的配偶 的完备匹配,则称这是一个稳定匹配。
稳定匹配一定存在,且存在一个\(O(n^2)\)的算法:
任选一个未匹配的男生x,按x的喜爱程度从大到小枚举每个女生,若当前女生没有配偶或喜欢x胜过喜欢当前配偶,则与x匹配。直到所有男生都匹配。
这一题我们用行表示男生,n个数表示女生。喜爱程度为:行更喜欢靠前的数,数更喜欢其出现位置靠后的行。
eg.如果x这一行靠后的一些数都被选过了,让它们喜欢x,要不产生矛盾则要x喜欢(选)尽量靠前的数。
复杂度\(O(nm)\)。
为何rank1这么容易。。
//107ms 2028kb
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 500000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=205,M=405;
int A[N][M],pos[N][N],lk[N],ans[N];
std::queue<int> q;
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int main()
{
for(int T=read(),n,m; T--; )
{
n=read(), m=read();
for(int i=1; i<=n; ++i)
for(int j=1; j<=m; ++j)
pos[i][A[i][j]=read()]=j;
memset(lk,0,sizeof lk);
for(int i=1; i<=n; ++i) q.push(i);
while(!q.empty())
{
int x=q.front(); q.pop();
ans[x]=0;
for(int i=1,v; i<=m; ++i)
if(v=A[x][i])
{
if(!lk[v]) {lk[v]=x, ans[x]=v; break;}
else if(pos[x][v]>pos[lk[v]][v])
{
q.push(lk[v]), lk[v]=x, ans[x]=v;
break;
}
}
}
for(int i=1; i<=n; ++i) printf("%d ",ans[i]); putchar('\n');
}
return 0;
}
UOJ.41.[清华集训2014]矩阵变换(稳定婚姻)的更多相关文章
- [BZOJ3816][清华集训2014]矩阵变换(稳定婚姻问题)
3816: 矩阵变换 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 803 Solved: 578[Submit][Status][Discuss] ...
- bzoj 3816&&uoj #41. [清华集训2014]矩阵变换
稳定婚姻问题: 有n个男生,n个女生,所有女生在每个男生眼里有个排名,反之一样. 将男生和女生两两配对,保证不会出现婚姻不稳定的问题. 即A-1,B-2 而A更喜欢2,2更喜欢A. 算法流程: 每次男 ...
- uoj #46[清华集训2014]玄学
uoj 因为询问是关于一段连续区间内的操作的,所以对操作构建线段树,这里每个点维护若干个不交的区间,每个区间\((l,r,a,b)\)表示区间\([l,r]\)内的数要变成\(ax+b\) 每次把新操 ...
- uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题
[清华集训2014]矩阵变换 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...
- AC日记——【清华集训2014】奇数国 uoj 38
#38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...
- [UOJ#274][清华集训2016]温暖会指引我们前行
[UOJ#274][清华集训2016]温暖会指引我们前行 试题描述 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了一 ...
- [UOJ 41]【清华集训2014】矩阵变换
Description 给出一个 $N$ 行 $M$ 列的矩阵A, 保证满足以下性质: $M > N$. 矩阵中每个数都是 $[0, N]$ 中的自然数. 每行中, $[1, N]$ 中每个自然 ...
- 【BZOJ3816】【清华集训2014】矩阵变换 稳定婚姻问题
题目描述 给出一个\(n\)行\(m\)列的矩阵\(A\), 保证满足以下性质: 1.\(m>n\). 2.矩阵中每个数都是\([0,n]\)中的自然数. 3.每行中,\([1,n]\)中每个自 ...
- [清华集训2015 Day2]矩阵变换-[稳定婚姻模型]
Description 给出一个N行M列的矩阵,保证满足以下性质: M>N. 矩阵中每个数都是 [0,N]中的自然数. 每行中, [1,N]中每个自然数刚好出现一次,其余的都是0. 每列中,[1 ...
随机推荐
- Codeforces Round #477 (rated, Div. 2, based on VK Cup 2018 Round 3) F 构造
http://codeforces.com/contest/967/problem/F 题目大意: 有n个点,n*(n-1)/2条边的无向图,其中有m条路目前开启(即能走),剩下的都是关闭状态 定义: ...
- Python 算法实现
# [程序1] # 题目:有1.2.3.4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? l=[1,2,3,4] count = 0 for i in range(len(l)): fo ...
- html5 canvas创建阴影
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 5个经典的javascript面试问题
问题1:Scope作用范围 考虑下面的代码: (function() { var a = b = 5;})(); console.log(b); 什么会被打印在控制台上? 回答 上面的代码会打印 ...
- 20155314 2016-2017-2 《Java程序设计》第7周学习总结
20155314 2016-2017-2 <Java程序设计>第7周学习总结 教材学习内容总结 了解Lambda语法 了解方法引用 了解Fucntional与Stream API 掌握Da ...
- opencv附加依赖性选择,提示找不到opencv_world400d.dll
连接器>>输入>>附加依赖项,添加opencv_world400d.lib库文件名,在....\opencv\build\x64\vc14\lib有2个lib文件, 带d的是d ...
- Loadrunner里面的深入理解Resource 的 0和1
最近在倒腾loadrunner,发现一些非常有意思的配置项,也许同学们平时去玩的时候,没有注意这些点.我也查阅了网上的帖子,说的都不够详细~操作起来的话,同学们也只是看到文字的描述,并不能发现区别.今 ...
- js 判断日期大小、是否在时间范围内等处理
var beginval="2015-09-01";//这个时间可以是日期控件选择的,也可以是其他的任何日期时间 var endval="2015-09-01" ...
- E. Andrew and Taxi(二分+拓扑判环)
题目链接:http://codeforces.com/contest/1100/problem/E 题目大意:给你n和m,n代表有n个城市,m代表有m条边,然后m行输入三个数,起点,终点,花费.,每一 ...
- Servlet笔记9--Cookie
Cookie: 使用Cookie机制实现十天内免登陆: Servlet程序: package com.bjpowernode.javaweb.servlet; import java.io.IOExc ...