题目链接

操作序列的顺序显然是无关的,所以只需按特定顺序求出一个长度为\(l\)的操作序列,它对答案的贡献为\(l!\)。

我们从小到大枚举所有选择。若当前为第\(i\)个,如果有一段长度为\(2^i\)不是+1+1这样递增的,那么需要把它分为两段长度为\(2^{i-1}\)的然后交换(在此之前满足所有长度更小的如\(2^{i-1}\)递增)。

如果有两段长度为\(2^i\)的非每次加1的递增段,会有四种情况,如\(3,8,\cdots,7,4\)(也可能无解:\(8,3,\cdots,7,4\)),即把这两段分成四段长度为\(2^{i-1}\)的,然后枚举四种情况(只会有两种可行方案吧)交换,如果可行下一层DFS。

如果多于两段,不可能有解。

如果没有,那不能交换,下一层。

//836kb	164ms (BZOJ怎么也那么多0ms。。)
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
const int N=(1<<12)+3; int n,A[N],fac[15],bit[15];
long long Ans; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
bool Check(int p,int k)
{
for(int i=p; i<p+k-1; ++i)
if(A[i]+1!=A[i+1]) return 0;
return 1;
}
void Swap(int p1,int p2,int k)
{
for(int i=0; i<k; ++i)
std::swap(A[p1+i],A[p2+i]);
}
void DFS(int p,int cnt)
{
if(p>n) Ans+=fac[cnt];
else
{
int p1=0,p2=0;
for(int i=1; i<=bit[n]; i+=bit[p])
if(!Check(i,bit[p])){
if(!p1) p1=i;
else if(!p2) p2=i;
else return;
}
if(!p1&&!p2) DFS(p+1,cnt);
else if(p1&&!p2)
Swap(p1,p1+bit[p-1],bit[p-1]), DFS(p+1,cnt+1), Swap(p1,p1+bit[p-1],bit[p-1]);
else
{
for(int i=0; i<=1; ++i)
for(int j=0; j<=1; ++j)
{
Swap(p1+i*bit[p-1],p2+j*bit[p-1],bit[p-1]);
if(Check(p1,bit[p])&&Check(p2,bit[p]))//两个位置!
{
DFS(p+1,cnt+1);
Swap(p1+i*bit[p-1],p2+j*bit[p-1],bit[p-1]);
break;
}
Swap(p1+i*bit[p-1],p2+j*bit[p-1],bit[p-1]);
}
}
}
} int main()
{
fac[0]=fac[1]=1;
for(int i=2; i<=12; ++i) fac[i]=fac[i-1]*i;
for(int i=0; i<=12; ++i) bit[i]=1<<i;
n=read();
for(int i=1; i<=bit[n]; ++i) A[i]=read();
DFS(1,0);
printf("%lld",Ans); return 0;
}

BZOJ.3990.[SDOI2015]排序(DFS)的更多相关文章

  1. BZOJ 3990: [SDOI2015]排序 [搜索]

    3990: [SDOI2015]排序 题意:\(2^n\)的一个排列,给你n种操作,第i种把每\(2^{i-1}\)个数看成一段,交换任意两段.问是这个序列有序的操作方案数,两个操作序列不同,当且仅当 ...

  2. BZOJ 3990 [SDOI2015]排序

    题解: 首先很容易看出各个操作是互不影响的,即对于一个合法的操作序列,我们可以任意交换两个操作的位置而不影响合法性. 因此我们可以忽略操作先后的影响,只考虑这个操作是否会出现在操作序列中. 如果用2n ...

  3. BZOJ 3990 [SDOI2015]排序 ——搜索

    [题目分析] 可以发现,操作的先后顺序是不影响结果的,那么答案就是n!的和. 可以从小的步骤开始搜索,使得每一个当前最小的块都是上升的数列,然后看看是否可行即可. 复杂度好像是4^n [代码](哪里写 ...

  4. [BZOJ3990][SDOI2015]排序(DFS)

    3990: [SDOI2015]排序 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 902  Solved: 463[Submit][Status][ ...

  5. 【搜索】BZOJ 3990: 【Sdoi 2015】排序

    3990: [SDOI2015]排序 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 336  Solved: 164[Submit][Status][ ...

  6. BZOJ 3990: [SDOI2015]排序(搜索+剪枝)

    [SDOI2015]排序 Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1< ...

  7. bzoj 3991: [SDOI2015]寻宝游戏 虚树 set

    目录 题目链接 题解 代码 题目链接 bzoj 3991: [SDOI2015]寻宝游戏 题解 发现每次答案就是把虚树上的路径*2 接在同一关键点上的点的dfs序是相邻的 那么用set动态维护dfs序 ...

  8. 【LG3322】[SDOI2015]排序

    [LG3322][SDOI2015]排序 题面 洛谷 题解 交换顺序显然不影响答案,所以每种本质不同的方案就给答案贡献次数的阶乘. 从小往大的交换每次至多\(4\)中决策,复杂度\(O(4^n)\). ...

  9. SDOI2015 排序

    SDOI2015 排序 今天看到这道题,没有一点思路,暴力都没的打...还是理解错题意了,操作不同位置不是说改不同的区间,而是不同操作的顺序...考场上如果知道这个的话最少暴力拿一半啊,因为正解本来就 ...

随机推荐

  1. ideau 2018.1.2安装和使用

    此博文的各安装软件.方法技巧仅供研究使用,请勿用于商业活动.下载.操作后请于24小时内删除.对于使用过程中出现的一切问题.责任.纠纷,概不负责. 1.下载ideau-2018.1.2,点击下载,提取码 ...

  2. spring boot 配置数据源

    以postgreSQL为例,方便下次直接使用. 其中pom.xml引入如下依赖. <?xml version="1.0" encoding="UTF-8" ...

  3. 情人节网站logo赏析

    一年一度的情人节,不少网站都进行了不错的装点,我们不妨来简单浏览一下,借以触发灵感. 百度 百度的logo放上了改变,变成了一个gif,图片如下. 腾讯 淘宝 淘宝的logo同样换成了一个gif 谷歌 ...

  4. artTemplate

    1.http://www.cnblogs.com/jiqiyoudu/p/4588042.html

  5. HTML的文档类型:<!DOCTYPE >

    <!DOCTYPE> 声明:它不是 HTML 标签而且对大小写不敏感,而是指示 web 浏览器关于页面使用哪个 HTML 版本进行编写的指令.而且 声明必须是 HTML 文档的第一行,位于 ...

  6. asp.net分页之AJAX 分页

    查询功能是开发中最重要的一个功能,大量数据的显示,我们用的最多的就是分页. 在ASP.NET 中有很多数据展现的控件,比如Repeater.GridView,用的最多的GridView,它同时也自带了 ...

  7. ftp 服务

    ftp 上传下载 yum install ftp -y ftp:192.168.1.1 上传 put file1 下载 get file2 直接方式 ftp get test.tar.gz 文件 ft ...

  8. CSUST 1506 ZZ的计算器 模拟题

    题目描述:实现一个计算器,可以进行任意步的整数以内的加减乘除运算,运算符号只有+.-.*./,求出结果. 解题报告:一个可以说麻烦的模拟题,我们可以这样,输入以字符串的形式输入,然后将输入先做一遍预处 ...

  9. 第8月第22天 python scrapy

    1. cd /Users/temp/Downloads/LagouSpider-master ls ls ls lagou/settings.py cat lagou/settings.py ls p ...

  10. shell邮件发送功能实现

    本文中以163邮箱为例,测试shell邮件发送功能.常见的工具有:mailx.sendmail.mutt等. 1.设置邮件客户端 (1)启用pop3.smtp服务,以支持第三方客户端支持 (2)设置授 ...