平面最近点对,是指给出平面上的n个点,寻找点对间的最小距离

首先可以对按照x为第一关键字排序,然后每次按照x进行分治,左边求出一个最短距离d1,右边也求出一个最短距离d2,那么取d=min(d1, d2)

然后只需考虑横跨左右两侧的点,不妨枚举左侧的点pi

那么很显然的是如果pi距离中间的点超过了d,便可以直接舍去,只需考虑距离中间点小于d的点

这样一来就可以对每个pi画一个边长为2d的正方形,易证,矩形内最多存在8个点。

那么关键问题就是要快速找这8个点

朴素做法是对分治后的点进行快排,这样复杂度就是nlognlogn

但是我们如果结合归并排序,每一次分治的过程顺带就按y归并排序,便可以把logn省掉了 (%%%想出做法的和鑫神犇)

代码如下

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
struct P
{
int x, y;
bool operator <(const P& B)const { return x < B.x; }
}p[];
int dis(P &A, P &B) { return (A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y); }
P Q[];
int Divide(int l, int r)
{
if(l == r) return 1e7;
int mid = (l+r)>>, d, tx = p[mid].x, tot = ;
d = min(Divide(l, mid), Divide(mid+, r));
for(int i = l, j = mid+; (i <= mid || j <= r); i++)
{
while(j <= r && (p[i].y > p[j].y || i > mid)) Q[tot++] = p[j], j++; //归并按y排序
if(abs(p[i].x - tx) < d && i <= mid) //选择中间符合要求的点
{
for(int k = j-; k > mid && j-k < ; k--) d = min(d, dis(p[i], p[k]));
for(int k = j; k <= r && k-j < ; k++) d = min(d, dis(p[i], p[k]));
}
if(i <= mid) Q[tot++] = p[i];
}
for(int i = l, j = ; i <= r; i++, j++) p[i] = Q[j];
return d;
} int main()
{
int n;
cin>>n;
for(int i = ; i <= n; i++) cin>>p[i].x>>p[i].y;
sort(p+, p++n);
cout<<Divide(, n)<<endl;
}

注意:这里只选了坐标为整数的点,而且范围较小,需要一定的更改才能使用

平面最近点对(分治nlogn)的更多相关文章

  1. 计算几何 平面最近点对 nlogn分治算法 求平面中距离最近的两点

    平面最近点对,即平面中距离最近的两点 分治算法: int SOLVE(int left,int right)//求解点集中区间[left,right]中的最近点对 { double ans; //an ...

  2. Vijos 1012 清帝之惑之雍正 平面最近点对(分治)

    背景 雍正帝胤祯,生于康熙十七年(1678)是康熙的第四子.康熙61年,45岁的胤祯继承帝位,在位13年,死于圆明园.庙号世宗. 胤祯是在康乾盛世前期--康熙末年社会出现停滞的形式下登上历史舞台的.复 ...

  3. Luogu 1429 平面最近点对 | 平面分治

    Luogu 1429 平面最近点对 题目描述 给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的 输入输出格式 输入格式: 第一行:n:2≤n≤200000 ...

  4. Luogu P1429 平面最近点对(加强版)(分治)

    P1429 平面最近点对(加强版) 题意 题目描述 给定平面上\(n\)个点,找出其中的一对点的距离,使得在这\(n\)个点的所有点对中,该距离为所有点对中最小的. 输入输出格式 输入格式: 第一行: ...

  5. P1429 平面最近点对(加强版)(分治)

    P1429 平面最近点对(加强版) 主要思路: 分治,将点按横坐标为第1关键字升序排列,纵坐标为第2关键字升序排列,进入左半边和右半边进行分治. 设d为左右半边的最小点对值.然后以mid这个点为中心, ...

  6. poj3714 Raid(分治求平面最近点对)

    题目链接:https://vjudge.net/problem/POJ-3714 题意:给定两个点集,求最短距离. 思路:在平面最近点对基础上加了个条件,我么不访用f做标记,集合1的f为1,集合2的f ...

  7. $Poj3714/AcWing\ Raid$ 分治/平面最近点对

    $AcWing$ $Sol$ 平面最近点对板子题,注意要求的是两种不同的点之间的距离. $Code$ #include<bits/stdc++.h> #define il inline # ...

  8. HDU1007--Quoit Design(平面最近点对)

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

  9. HDU-4631 Sad Love Story 平面最近点对

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4631 数据是随机的,没有极端数据,所以可以分段考虑,最小值是一个单调不增的函数,然后每次分治算平面最近 ...

随机推荐

  1. 突然的明白--public static 类名 函数名()

    public static ImageUtilEngine getImageEngine() { return imageEngine; } 这个是什么啊........纠结了一个多星期的东西 忽然间 ...

  2. MVC 如何在action中获取当前网站的根路径

    如果基于MVC搭建的网站在IIS发布的是一个单独的端口,那么可以直接通过后面语句获得跟路径:Request.Url.GetLeftPart(UriPartial.Authority).ToString ...

  3. 在ado.net中实现oracle存储过程调用两种方式

      1.常规的存储过程调用 String or=ConfigurationManager.ConnectionStrings["conn"].ToString(); OracleC ...

  4. less初识

    一种 动态 样式 语言. LESS 将 CSS 赋予了动态语言的特性,如 变量, 继承,运算, 函数. LESS 既可以在 客户端 上运行 (支持IE 6+, Webkit, Firefox),也可以 ...

  5. go语言之行--简介与环境搭建

    一.Go简介 Go 是一个开源的编程语言,它能让构造简单.可靠且高效的软件变得容易. Go是从2007年末由Robert Griesemer, Rob Pike, Ken Thompson主持开发,后 ...

  6. 20155238 《JAVA程序设计》实验三(敏捷开发与XP实践)实验报告

    实验内容 敏捷开发与XP实践 XP基础 XP核心实践 相关工具 实验要求 1.没有Linux基础的同学建议先学习<Linux基础入门(新版)><Vim编辑器> 课程 2.完成实 ...

  7. AWK处理数组

    转自ChinaUnix论坛,感谢作者整理. 在文本处理的工作中,awk的数组是必不可少的工具,在这里,同样以总结经验和教训的方式和大家分享下我的一些学习心得,如有错误的地方,请大家指正和补充. awk ...

  8. 汇编 if else

    知识点: if else 逆向还原代码 一.了解if else结构 sub esp, |. 8B45 FC MOV EAX,DWORD PTR SS:[EBP-] 0040102C |. 3B45 ...

  9. Dynamics CRM Online Administrator password reset

    道道还挺多,好好看看 Dynamics CRM Online Administrator password reset

  10. centos 7:network: 正在打开接口 ens33: 错误:激活连接失败:No suitable device found for this connection.

    Mar :: localhost systemd: Starting LSB: Bring up/down networking... Mar :: localhost network: 正在打开环回 ...