考虑枚举相邻点距离差的比例。显然应使比例值gcd为1以保证不重复统计。确定比例之后,各维坐标的方案数就可以分开考虑。设比例之和为k,则若坐标上限为m,该维坐标取值方案数即为Σm-ki (i=1~⌊m/k⌋),也即⌊m/k⌋·m-k·(⌊m/k⌋+1)·⌊m/k⌋/2,设其为f(m,k)。总方案数即将各维方案数相乘,设为F(k)。

  于是得到答案即为ΣkΣa1Σa2……Σac-2 [gcd(a1,a2,……,ac-2,k)=1]·F(k)。套路一波,得到Σk F(k)·(Σd μ(d)·g(k/d)) (d|k),其中g(n)为将n划成c-1份的方案数,也即C(n-1,c-2)。对每个询问暴力一遍,复杂度即为O(Tnm)。注意这里的组合数只能递推,因为值域比模数还大。

  卡卡常就过了毕竟正解的复杂度也优不到哪里去。

  考虑优化。容易想到整除分块。固定⌊m/k⌋后,要求和的部分是一个关于k的n次多项式。分治NTT暴力求出多项式系数对各项求个前缀和即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define P 10007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,c,a[],b[],mobius[N],prime[N],g[][N],f[][][N],p[],C[N][],fac[N],inv[N],cnt;
bool flag[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3434.in","r",stdin);
freopen("bzoj3434.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
mobius[]=;
for (int i=;i<=N-;i++)
{
if (!flag[i]) prime[++cnt]=i,mobius[i]=-;
for (int j=;j<=cnt&&prime[j]*i<=N-;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) break;
mobius[prime[j]*i]=-mobius[i];
}
}
C[][]=;
for (int i=;i<=N-;i++)
for (int j=;j<=min(,i);j++)
C[i][j]=(C[i-][j-]+C[i-][j])%P;
for (int c=;c<=;c++)
for (int i=;i<=N-;i++)
if (mobius[i])
for (int j=i;j<=N-;j+=i)
g[c][j]=(g[c][j]+mobius[i]*(c->j/i-?:C[j/i-][c-])+P)%P;
int s=;
for (int c=;c<=;c++)
for (int i=;i<=N-;i++)
{
int s=;
for (int k=;k<=;k++)
{
f[k][c][i]=(f[k][c][i-]+g[c][i]*s)%P;
s=s*i%P;
}
}
T=read();
while (T--)
{
n=read(),c=read();int m=N,ans=;
for (int i=;i<=n;i++) m=min(m,a[i]=read());
for (int i=;i<=m;i++)
{
int t=m;p[]=;for (int j=;j<=n;j++) t=min(t,a[j]/(b[j]=a[j]/i)),p[j]=;
for (int j=;j<=n;j++)
{
for (int k=j;k>=;k--)
p[k]=(1ll*p[k]*b[j]*a[j]-1ll*p[k-]*(b[j]+)*b[j]/)%P;
p[]=1ll*p[]*b[j]*a[j]%P;
}
for (int j=;j<=n;j++)
ans=(ans+p[j]*(f[j][c][t]-f[j][c][i-])%P+P)%P;
i=t;
}
cout<<ans<<endl;
}
return ;
}

BZOJ3434 WC2014时空穿梭(莫比乌斯反演)的更多相关文章

  1. 【BZOJ3434】[Wc2014]时空穿梭 莫比乌斯反演

    [BZOJ3434][Wc2014]时空穿梭 Description Input 第一行包含一个正整数T,表示有T组数据求解每组数据包含两行,第一行包含两个正整数N,C(c>=2),分别表示空间 ...

  2. BZOJ 3434 [WC2014]时空穿梭 (莫比乌斯反演)

    题面:BZOJ传送门 洛谷传送门 好难啊..反演的终极题目 首先,本题的突破口在于直线的性质.不论是几维的空间,两点一定能确定一条直线 选取两个点作为最左下和最右上的点! 假设现在是二维空间,选取了$ ...

  3. [WC2014]时空穿梭(莫比乌斯反演)

    https://www.cnblogs.com/CQzhangyu/p/7891363.html 不难推到$\sum\limits_{D=1}^{m_1}\sum\limits_{d|D}C_{d-1 ...

  4. UOJ#54 BZOJ3434 [WC2014]时空穿梭

    题目描述 小 X 驾驶着他的飞船准备穿梭过一个 \(n\) 维空间,这个空间里每个点的坐标可以用 \(n\) 个实数表示,即 \((x_1,x_2,\dots,x_n)\). 为了穿过这个空间,小 X ...

  5. BZOJ3434 [Wc2014]时空穿梭

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  6. UOJ 54 【WC2014】时空穿梭——莫比乌斯反演

    题目:http://uoj.ac/problem/54 想写20分. Subtask 2 就是枚举4个维度的值的比例,可算对于一个比例有多少个值可以选,然后就是组合数.结果好像不对. 因为模数太小,组 ...

  7. [WC2014]时空穿梭

    这才叫莫比乌斯反演题. 一.题目 点此看题 二.解法 也没有什么好的思路,我们不妨把暴力柿子写出来,我们想枚举直线,但是这道题不能枚举直线的斜率,所以就要用整数来表示直线,我们不妨枚举出发点和终止点的 ...

  8. 【BZOJ】3434: [Wc2014]时空穿梭

    http://www.lydsy.com/JudgeOnline/problem.php?id=3434 题意:n维坐标中要找c个点使得c个点在一条线上且每一维的坐标单调递增且不能超过每一维限定的值m ...

  9. 莫比乌斯反演题表II

    bzoj3994:[SDOI2015]约数个数和 **很好推+有个小结论bzoj3309:DZY Loves Math ***很好推+线筛某函数/卡常bzoj4816:[Sdoi2017]数字表格 * ...

随机推荐

  1. javaee_SSH

    这是javaee课程的第六个实验ssh sturts2+sping 3+hibernate 现予以记录整个过程,以防遗忘 1. 2. 3. 4. 5.输入mvnrepository.com进入-> ...

  2. 11.7 (下午)开课二个月零三天 (PDO)

    PDO访问方式操作数据库   mysqli是专门访问MySQL数据库的,不能访问其它数据库.PDO可以访问多种的数据库,它把操作类合并在一起,做成一个数据访问抽象层,这个抽象层就是PDO,根据类操作对 ...

  3. Spring Boot (十三): Spring Boot 小技巧

    一些 Spring Boot 小技巧.小知识点 初始化数据 我们在做测试的时候经常需要初始化导入一些数据,如何来处理呢?会有两种选择,一种是使用 Jpa,另外一种是 Spring JDBC .两种方式 ...

  4. effective c++ 笔记 (23-25)

    //---------------------------15/04/08---------------------------- //#23   宁以non_member.non_friend替换m ...

  5. 《Effective Java》学习笔记 ——异常

    充分发挥异常的优点,可以提高程序的可读性.可靠性和可维护性. 第57条 只针对异常的情况才使用异常 第58条 对可恢复的情况使用受检异常,对编程错误使用运行时异常 * 如果期望调用者能够适当的恢复,使 ...

  6. Jmeter(八)-发送JDBC请求

    下午花了两个小时研究了一下Jmeter发送JDBC请求,现在把基本操作流程分享一下. 做JDBC请求,首先需要两个jar包:mysql驱动-mysql-connector-java-5.1.13-bi ...

  7. JNI探秘-----你不知道的FileInputStream的秘密

    作者:zuoxiaolong8810(左潇龙),转载请注明出处,特别说明:本博文来自博主原博客,为保证新博客中博文的完整性,特复制到此留存,如需转载请注明新博客地址即可. 设计模式系列结束,迎来了LZ ...

  8. 阿里云ESC入网和出网指的什么

    什么是入网带宽和出网带宽 云服务器 ECS 的入网带宽和出网带宽皆以服务器角度出发.下表给出了入网带宽和出网带宽的具体内容: 带宽类别 (Mbit/s) 描述 入网带宽 流入云服务器 ECS 的带宽从 ...

  9. Windows Defender还原误删文件

    Win 10 新版本的Windows Defender隔离/删除的文件没有还原的选项,导致被误删的文件无法在威胁记录中恢复.经过尝试发现可以通过修改注册表添加 “还原” 选项 打开注册表,找到 HKE ...

  10. win10引导错误的修复(内容系转载)

    #!尊重原作者,再此声明此内容属于网络转载,只是为了能保留下来方便日后查阅!!! win10误删引导文件,0xc0000098的解决方案,bcd引导文件受损情况分析 一.※相对简单的解决方法,对应的情 ...