BZOJ3434 WC2014时空穿梭(莫比乌斯反演)
考虑枚举相邻点距离差的比例。显然应使比例值gcd为1以保证不重复统计。确定比例之后,各维坐标的方案数就可以分开考虑。设比例之和为k,则若坐标上限为m,该维坐标取值方案数即为Σm-ki (i=1~⌊m/k⌋),也即⌊m/k⌋·m-k·(⌊m/k⌋+1)·⌊m/k⌋/2,设其为f(m,k)。总方案数即将各维方案数相乘,设为F(k)。
于是得到答案即为ΣkΣa1Σa2……Σac-2 [gcd(a1,a2,……,ac-2,k)=1]·F(k)。套路一波,得到Σk F(k)·(Σd μ(d)·g(k/d)) (d|k),其中g(n)为将n划成c-1份的方案数,也即C(n-1,c-2)。对每个询问暴力一遍,复杂度即为O(Tnm)。注意这里的组合数只能递推,因为值域比模数还大。
卡卡常就过了毕竟正解的复杂度也优不到哪里去。
考虑优化。容易想到整除分块。固定⌊m/k⌋后,要求和的部分是一个关于k的n次多项式。分治NTT暴力求出多项式系数对各项求个前缀和即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define P 10007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,c,a[],b[],mobius[N],prime[N],g[][N],f[][][N],p[],C[N][],fac[N],inv[N],cnt;
bool flag[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3434.in","r",stdin);
freopen("bzoj3434.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
mobius[]=;
for (int i=;i<=N-;i++)
{
if (!flag[i]) prime[++cnt]=i,mobius[i]=-;
for (int j=;j<=cnt&&prime[j]*i<=N-;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) break;
mobius[prime[j]*i]=-mobius[i];
}
}
C[][]=;
for (int i=;i<=N-;i++)
for (int j=;j<=min(,i);j++)
C[i][j]=(C[i-][j-]+C[i-][j])%P;
for (int c=;c<=;c++)
for (int i=;i<=N-;i++)
if (mobius[i])
for (int j=i;j<=N-;j+=i)
g[c][j]=(g[c][j]+mobius[i]*(c->j/i-?:C[j/i-][c-])+P)%P;
int s=;
for (int c=;c<=;c++)
for (int i=;i<=N-;i++)
{
int s=;
for (int k=;k<=;k++)
{
f[k][c][i]=(f[k][c][i-]+g[c][i]*s)%P;
s=s*i%P;
}
}
T=read();
while (T--)
{
n=read(),c=read();int m=N,ans=;
for (int i=;i<=n;i++) m=min(m,a[i]=read());
for (int i=;i<=m;i++)
{
int t=m;p[]=;for (int j=;j<=n;j++) t=min(t,a[j]/(b[j]=a[j]/i)),p[j]=;
for (int j=;j<=n;j++)
{
for (int k=j;k>=;k--)
p[k]=(1ll*p[k]*b[j]*a[j]-1ll*p[k-]*(b[j]+)*b[j]/)%P;
p[]=1ll*p[]*b[j]*a[j]%P;
}
for (int j=;j<=n;j++)
ans=(ans+p[j]*(f[j][c][t]-f[j][c][i-])%P+P)%P;
i=t;
}
cout<<ans<<endl;
}
return ;
}
BZOJ3434 WC2014时空穿梭(莫比乌斯反演)的更多相关文章
- 【BZOJ3434】[Wc2014]时空穿梭 莫比乌斯反演
[BZOJ3434][Wc2014]时空穿梭 Description Input 第一行包含一个正整数T,表示有T组数据求解每组数据包含两行,第一行包含两个正整数N,C(c>=2),分别表示空间 ...
- BZOJ 3434 [WC2014]时空穿梭 (莫比乌斯反演)
题面:BZOJ传送门 洛谷传送门 好难啊..反演的终极题目 首先,本题的突破口在于直线的性质.不论是几维的空间,两点一定能确定一条直线 选取两个点作为最左下和最右上的点! 假设现在是二维空间,选取了$ ...
- [WC2014]时空穿梭(莫比乌斯反演)
https://www.cnblogs.com/CQzhangyu/p/7891363.html 不难推到$\sum\limits_{D=1}^{m_1}\sum\limits_{d|D}C_{d-1 ...
- UOJ#54 BZOJ3434 [WC2014]时空穿梭
题目描述 小 X 驾驶着他的飞船准备穿梭过一个 \(n\) 维空间,这个空间里每个点的坐标可以用 \(n\) 个实数表示,即 \((x_1,x_2,\dots,x_n)\). 为了穿过这个空间,小 X ...
- BZOJ3434 [Wc2014]时空穿梭
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- UOJ 54 【WC2014】时空穿梭——莫比乌斯反演
题目:http://uoj.ac/problem/54 想写20分. Subtask 2 就是枚举4个维度的值的比例,可算对于一个比例有多少个值可以选,然后就是组合数.结果好像不对. 因为模数太小,组 ...
- [WC2014]时空穿梭
这才叫莫比乌斯反演题. 一.题目 点此看题 二.解法 也没有什么好的思路,我们不妨把暴力柿子写出来,我们想枚举直线,但是这道题不能枚举直线的斜率,所以就要用整数来表示直线,我们不妨枚举出发点和终止点的 ...
- 【BZOJ】3434: [Wc2014]时空穿梭
http://www.lydsy.com/JudgeOnline/problem.php?id=3434 题意:n维坐标中要找c个点使得c个点在一条线上且每一维的坐标单调递增且不能超过每一维限定的值m ...
- 莫比乌斯反演题表II
bzoj3994:[SDOI2015]约数个数和 **很好推+有个小结论bzoj3309:DZY Loves Math ***很好推+线筛某函数/卡常bzoj4816:[Sdoi2017]数字表格 * ...
随机推荐
- P2731 骑马修栅栏 Riding the Fences
题目描述 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编一个程序,读入栅栏网络的描述,并计算出一条修栅栏的路径,使每个栅栏都恰好被经过一次.John能从任何一个顶 ...
- Python中 __init__的通俗解释?附修饰器contextmanager的理解
作者:匿名用户链接:https://www.zhihu.com/question/46973549/answer/103805810来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...
- jpbm工作流框架
一:JBPM是什么?有什么用?能解决什么问题? 现实生活中有很多需要走一些流程的过程,比如请假流程,报销流程等,使用工作流框架,即可写一个流程即可,添加流程时不在繁琐的建立新的各种配置. 1:jBPM ...
- Windows:查看IP地址,IP地址对应的机器名,占用的端口,以及占用该端口的应用程
Windows 服务器系列: Windows:查看IP地址,IP地址对应的机器名,占用的端口,以及占用该端口的应用程 Windows:使用Dos命令管理服务(Services) Windows:任务调 ...
- 华为测试大牛Python+Django接口自动化怎么写的?
有人喜欢创造世界,他们做了开发者:有的人喜欢开发者,他们做了测试员.什么是软件测试?软件测试就是一场本该在用户面前发生的灾难提前在自己面前发生了,这会让他们生出一种救世主的感觉,拯救了用户,也就拯救者 ...
- [SHELL]输入输出重定向与管道
一 . 输出重定向(将命令的输出重定向到文件): ls -al > test 以覆盖的方式写入 ls -al >> test 以追加的方式写入 二 . 输入重定向(将文件的内容重定向 ...
- Java 面向对象之构造方法
01构造方法引入 A:构造方法的引入 在开发中经常需要在创建对象的同时明确对象的属性值,比如员工入职公司就要明确他的姓名.年龄等属性信息. 那么,创建对象就要明确属性值,那怎么解决呢?也就是在创建对象 ...
- DRF框架获取参数的方式
DRF获取参数的方式 例如url url(r'^demo/(?P<word>.*)/$', DemoView.as_view()) 在类视图中获取参数 url:http://127.0.0 ...
- android开发之使用SQLite数据库存储
http://blog.csdn.net/jason0539/article/details/16360835 SQLite 介绍 SQLite 一个非常流行的嵌入式数据库,它支持 SQL 语言,并且 ...
- 美食查询手机应用"吃了么":NABC
一 N(need) 当你在一个陌生的地方游玩,想吃到当地的招牌美食时怎么办? 当你听说有一个很好吃的家常菜,也想自己下厨试试时怎么办?打印出菜谱,还是奔波于厨房和电脑之前? 查询周边美食的功能对于那些 ...