A conveyor belt has packages that must be shipped from one port to another within D days.

The i-th package on the conveyor belt has a weight of weights[i].  Each day, we load the ship with packages on the conveyor belt (in the order given by weights). We may not load more weight than the maximum weight capacity of the ship.

Return the least weight capacity of the ship that will result in all the packages on the conveyor belt being shipped within D days.

Example 1:

Input: weights = [1,2,3,4,5,6,7,8,9,10], D = 5
Output: 15
Explanation:
A ship capacity of 15 is the minimum to ship all the packages in 5 days like this:
1st day: 1, 2, 3, 4, 5
2nd day: 6, 7
3rd day: 8
4th day: 9
5th day: 10 Note that the cargo must be shipped in the order given, so using a ship of capacity 14 and splitting the packages into parts like (2, 3, 4, 5), (1, 6, 7), (8), (9), (10) is not allowed.

Example 2:

Input: weights = [3,2,2,4,1,4], D = 3
Output: 6
Explanation:
A ship capacity of 6 is the minimum to ship all the packages in 3 days like this:
1st day: 3, 2
2nd day: 2, 4
3rd day: 1, 4

Example 3:

Input: weights = [1,2,3,1,1], D = 4
Output: 3
Explanation:
1st day: 1
2nd day: 2
3rd day: 3
4th day: 1, 1

Note:

  1. 1 <= D <= weights.length <= 50000
  2. 1 <= weights[i] <= 500

Idea 1. Start with easy case, assume d = 2, it means splitting the array in two parts so that the maximum sum of continuous subarray is the minimal, given example

weights = [3,2,2,4,1,4], D = 2, n = 6
k = 0, dp(0, 5) = max(prefix(0, 0), dp(1, 5)(1)) = max(3, 13) = 13
k = 1, dp(0, 5) = max(prefix(0, 1), dp(2, 5)(1)) = max(5, 11) = 11
k = 2, dp(0, 5) = max(prefix(0, 2), dp(3, 5)(1)) = max(7, 9) = 9
k = 3, dp(0, 5) = max(prefix(0, 3), dp(4, 5)(1)) = max(11, 5) = 11
k = 4, dp(0, 5) = max(prefix(0, 4), dp(5, 5)(1)) = max(12, 4) = 12
dp(0, 5) = min(13, 11, 9, 11, 12) = 9,splitting the array from k = 2, [3, 2, 2], [4,1,4] achieving the minimum load 9. how about d = 3?
k = 0, dp(0, 5) = max(prefix(0, 0), dp(1, 5)(d=2)) = max(3, 8) = 8
k = 1, dp(0, 5) = max(prefix(0, 1), dp(2, 5)(d=2)) = max(5, 6) = 6
k = 2, dp(0, 5) = max(prefix(0, 2), dp(3, 5)(d=2)) = max(7, 5) = 7
k = 3, dp(0, 5) = max(prefix(0, 3), dp(4, 5)(d=2)) = max(11, 4) = 11
dp(0, 5)(3) = min(8, 6, 7, 11) = 6

spliting the array from position k, if put all loads from weights(i, k) as the first day, weights(k+1, j) requires to be loaded within d-1 days, another subproblems, the relationship can be respresented as the formula, let dp(i, j)(d) be the minimum loads in d days:

dp(i, j)(d) = min(i<=k <= j-d+1)( max( prefix(i, k), dp(k+1, j)(d-1)) ))

如果某一段weights[i, j]用一天,需要计算subarray sum, 用一个prefixSum数组提前计算好

Time complexity: O(n3)

Space complexity: O(n2)

    private int calculateMinCapacity(int i, int j, int d,
int[] prefixSum, int[][] dp) {
int minCapacity = Integer.MAX_VALUE; for(int k = i; k <= j-d+1; ++k) {
int next = ((d == 2)? prefixSum[j+1] - prefixSum[k+1] : dp[k+1][j]);
int val = Math.max(prefixSum[k+1] - prefixSum[i], next);
minCapacity = Math.min(minCapacity, val);
}
return minCapacity;
} public int shipWithinDays(int[] weights, int D) {
int n = weights.length;
int[] prefixSum = new int[n+1];
for(int i = 1; i <= n; ++i) {
prefixSum[i] = prefixSum[i-1] + weights[i-1];
} int[][] dp = new int[n][n]; if(D == 1) {
return prefixSum[n];
} for(int d = 2; d <= D; ++d) {
for(int i = 0; i < n; ++i) {
for(int j = i+d-1; j < n; ++j) {
//for(int j = n-1; j>= i+d-1; --j) {
dp[i][j] = calculateMinCapacity(i, j, d, prefixSum, dp);
}
}
}
return dp[0][n-1];
}

Idea 1.b. 从上面的公式可以看出j是固定的n-1, 可以变成一维的dp

dp(i)(d) = min(i <= k <= j-d+1)(max(prefixSum(i, k), dp(k+1)(d-1)))

Time complexity: O(n2)

Space complexity: O(n)

 class Solution {
private int calculateMinCapacity(int i,int d,
int[] prefixSum, int[] dp) {
int minCapacity = Integer.MAX_VALUE;
int n = dp.length;
for(int k = i; k <= n-d; ++k) {
int next = ((d == 2)? prefixSum[n] - prefixSum[k+1] : dp[k+1]);
int val = Math.max(prefixSum[k+1] - prefixSum[i], next);
minCapacity = Math.min(minCapacity, val);
}
return minCapacity;
} public int shipWithinDays(int[] weights, int D) {
int n = weights.length;
int[] prefixSum = new int[n+1];
for(int i = 1; i <= n; ++i) {
prefixSum[i] = prefixSum[i-1] + weights[i-1];
} if(D == 1) {
return prefixSum[n];
}
if(D == n) {
return Arrays.stream(weights).max().getAsInt();
} int[] dp = new int[n];
for(int d = 2; d <= D; ++d) {
for(int i = 0; i <= n-d; ++i) {
dp[i]= calculateMinCapacity(i, d, prefixSum, dp);
}
} return dp[0];
}
}

Idea 2. 啊 竟然有binary search的妙法。确定search space: [max(weights[i]), sum(weights[i])], 这题是求

least weigth capacity, 即使找到第一个满足D days的weight, 不确定是否更小的也满足条件,所以要继续包括在search space中,就像寻找有duplicates的数组里第一个等于目标的index 还有网上看到的优化, 最小值设为max(sum(weights[i])/D, max(weights[i])), 如果数组里有很多小数,这个可以进一步的narrow down search space.

Note: 1. 特别容易混淆== 放哪边,days > D, move the search space to the rights, as the searched mid load is too small and it takes more days to finish the load, rule out mid load, move the search space from mid+1

    days <= D, even it's == D, there might be smaller load like mid-1 or mid-2 satisfy the conidition, move the search space to the right, upperbounded by mid, similar direction as the mid load is too large and it takes less days to finish the load and continue to seach the smaller load.

   2. sum + weight > load, 这个包括当前sum == load, 在前面sum的时候分割, 天数比分割数多一,初始化days=1, 这2个细节谨记 

Time complexity: nlog(mn), n is the length of weights, m is the maximum elements in weights,  checkdays takes n steps, which is executed during each binary search in the range(max(weights), sum(weights)).

Space complexity: O(1)

 class Solution {
private int checkDays(int[] weights, int load) {
int sum = 0;
int days = 1;
for(int weight: weights) {
if(sum + weight > load) {
++days;
sum = weight;
}
else {
sum += weight;
}
} return days;
} public int shipWithinDays(int[] weights, int D) {
int n = weights.length;
int minLoad = 0, maxLoad = 0;
for(int weight: weights) {
minLoad = Math.max(minLoad, weight);
maxLoad += weight;
} if(D == 1) {
return maxLoad;
}
if(D >= n) {
return minLoad;
} while(minLoad < maxLoad) {
int mid = minLoad + (maxLoad - minLoad)/2;
int days = checkDays(weights, mid);
if(days > D) {
minLoad = mid + 1;
}
else {
maxLoad = mid;
}
} return minLoad;
}
}

Capacity To Ship Packages Within D Days LT1011的更多相关文章

  1. Leetcode之二分法专题-1011. 在 D 天内送达包裹的能力(Capacity To Ship Packages Within D Days)

    Leetcode之二分法专题-1011. 在 D 天内送达包裹的能力(Capacity To Ship Packages Within D Days) 传送带上的包裹必须在 D 天内从一个港口运送到另 ...

  2. [Swift]LeetCode1011. 在 D 天内送达包裹的能力 | Capacity To Ship Packages Within D Days

    A conveyor belt has packages that must be shipped from one port to another within D days. The i-th p ...

  3. 128th LeetCode Weekly Contest Capacity To Ship Packages Within D Days

    A conveyor belt has packages that must be shipped from one port to another within D days. The i-th p ...

  4. LeetCode 1011. Capacity To Ship Packages Within D Days

    原题链接在这里:https://leetcode.com/problems/capacity-to-ship-packages-within-d-days/ 题目: A conveyor belt h ...

  5. Leetcode: Capacity To Ship Packages Within D Days

    A conveyor belt has packages that must be shipped from one port to another within D days. The i-th p ...

  6. Capacity To Ship Packages Within D Days

    A conveyor belt has packages that must be shipped from one port to another within D days. The i-th p ...

  7. 【leetcode】1014. Capacity To Ship Packages Within D Days

    题目如下: A conveyor belt has packages that must be shipped from one port to another within D days. The  ...

  8. 【LeetCode】1014. Capacity To Ship Packages Within D Days 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  9. Leetcode 1014. Capacity To Ship Packages Within D Days

    二分搜索 class Solution(object): def shipWithinDays(self, weights, D): """ :type weights: ...

随机推荐

  1. 强制改变css样式优先级

    .list{ left:20px!important; } css !important作用是提高指定CSS样式规则的应用优先权. !important是CSS1就定义的语法,作用是提高指定样式规则的 ...

  2. 数据库类型空间效率探索(四)-tinyint与enum与set

    mysql> select count(*) from userinfo;+----------+| count(*) |+----------+| 115597 |+----------+1 ...

  3. PHP实现curl和snoopy类模拟登陆方法

    Snoopy.class.php下载 方法/步骤   第一种:使用snoopy类实现模拟登陆 1.在网上下载一个Snoopy.class.php的文件   2.代码实现: <?php set_t ...

  4. Dedecms织梦内容页获取当前页面顶级栏目名称方法

    Dedecms织梦做站的时候,需要在当前页面调用顶级栏目名称的时候,织梦默认{dede:field name='typename' /} 可以获取当前栏目页上一级栏目的名称,而不是当前栏目顶级栏目名称 ...

  5. vue element upload上传、清除等

    如果项目中可以使用file-list,那我们可以点击file-list删除文件列表: 有时候项目中是不要这个文件列表的,所以在上传成功以后,文件列表一直存在,要重新上传就必须刷新页面,所以我们需要手动 ...

  6. js实现右击

    <!DOCTYPE html> <html>     <head>  <meta charset="UTF-8">  <tit ...

  7. ora-12899解决方法

    在使用ORACLE的过程中,会出现各种各样的问题,各种各样的错误,其中ORA-12899就是前段时间我在将数据导入到我本地机器上的时候一直出现的问题.不过还好已经解决了这个问题,现在分享一下,解决方案 ...

  8. unary

    unary - 必应词典   adj.[数]单元的 网络一元:一元的:一元码 例句Returns a value generated by rolling up the values of the c ...

  9. UFPS入门: Unity FPS 教程

    http://blog.csdn.net/kmyhy/article/details/72846348 UFPS : Ultimate FPS v1.7.3 download:https://item ...

  10. TZOJ 3244 Happy YuYu's Birthday(数学几何)

    描述 9月10日教师节,也是YuYu的生日,妈妈给YuYu准备了一个很大的圆形蛋糕,YuYu看中了蛋糕中间那诱人的樱桃(都挤到一块啦),小家伙很高兴,心里开始盘算着如何将樱桃全部分给自己.YuYu是个 ...