我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times  \cdots  \times {p_n}$)的余数也确定了,反之亦然。

用表达式表示如下:

\[\begin{array}{l}
x \equiv {a_1}(\bmod {p_1})\\
{\rm{     }} \vdots \\
x \equiv {a_n}(\bmod {p_n})
\end{array}\]

那么任何满足条件的x对于模N都是同余的。

其中满足条件的最小的x可以表示为:

\[x = {a_1}{b_1}\frac{N}{{{p_1}}} +  \cdots  + {a_n}{b_n}\frac{N}{{{p_n}}}\]

其中,${b_i}$为$\frac{N}{{{p_i}}}$模${p_i}$的数论倒数(即${b_i}\frac{N}{{{p_i}}} \equiv 1(\bmod {p_i})$)

用映射关系也可以表示为:

\[x\bmod N \mapsto (x\bmod {p_1},...,x\bmod {p_n})\]

这个性质可以推广到任何可交换环。实际上定义了一个环同构(ring isomorphism)。如在整数环上:

\[\mathbb{Z}/N\mathbb{Z} \cong \mathbb{Z}/{p_1}\mathbb{Z} \times  \ldots  \times \mathbb{Z}/{p_1}\mathbb{Z}\]

这意味着,在$\mathbb{Z}/N\mathbb{Z}$上的一系列算术操作可以在每个$\mathbb{Z}/{p_i}\mathbb{Z}$上分开做,再利用同构得到结果。

后面补充一些最近看的关于数论的知识。

  1. 环和理想(Rings and Ideals)

  $R$是一个环,$R$的理想$I$是$R$中的一个非空子集,对于加法以及$R$中任一元素的乘法是封闭的。

即,对于所有的$a,b \in I$,都有$a + b \in I$;对于所有的$a\in I$,以及所有的$r \in R$,都有$ar \in I$.

  主理想(Principal Ideal)是由单个元素产生的(R中的单个元素与R中的每个元素相乘产生)。若一个环中所有的理想都是主理想,那么这个环称为主理想环(Principal Ideal Ring,PIR)。若两个元素$a$和$b满足$a - b \in I$,那么说它们模$I$同余。

  商环(quotient ring) $R/I$是通过在$R$上定义$I$的陪集上进行加法和乘法操作得到的:

\[\left( {a + I} \right) + \left( {b + I} \right) = \left( {a + b + I} \right),\left( {a + I} \right) \times \left( {b + I} \right) = \left( {ab} \right) + I\]

  举个例子,整数域$\mathbb{Z}$是环,$2\mathbb{Z}$相当于由2产生的一个主理想。$\mathbb{Z}/2\mathbb{Z}$是一个对应的商环。

  2.主理想整环(Principal Ideal Domain,PID)

  整数域$\mathbb{Z}$就构成一个PID。典型的例子还包括高斯整数 $\mathbb{Z}[i] \buildrel \Delta \over = \left\{ {a + bi:a,b \in \mathbb{Z}} \right\}$和艾森斯坦整数(Eisenstein integer) $\mathbb{Z}[\omega] \buildrel \Delta \over = \left\{ {a + b\omega:a,b \in \mathbb{Z}} \right\}$.

  高斯整数在复平面上构成了一个正方形点阵,而艾森斯坦整数在复平面上构成了一个三角点阵。高斯整数有四个单位元$\left\{ { \pm 1, \pm i} \right\}$,艾森斯坦整数有六个单位元$\left\{ { \pm 1, \pm \omega , \pm {\omega ^2}} \right\}$

中国剩余定理(Chinese Remainder Theorem)的更多相关文章

  1. Chinese remainder theorem again(中国剩余定理)

    C - Chinese remainder theorem again Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:% ...

  2. hdu 1788 Chinese remainder theorem again(最小公倍数)

    Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...

  3. DHU 1788 Chinese remainder theorem again 中国剩余定理

    Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  4. HDU1788 Chinese remainder theorem again【中国剩余定理】

    题目链接: pid=1788">http://acm.hdu.edu.cn/showproblem.php?pid=1788 题目大意: 题眼下边的描写叙述是多余的... 一个正整N除 ...

  5. HDU——1788 Chinese remainder theorem again

    再来一发水体,是为了照应上一发水题. 再次也特别说明一下,白书上的中国剩余定理的模板不靠谱. 老子刚刚用柏树上的模板交上去,简直wa出翔啊. 下面隆重推荐安叔版同余方程组的求解方法. 反正这个版本十分 ...

  6. 【数论】【中国剩余定理】【LCM】hdu1788 Chinese remainder theorem again

    根据题目容易得到N%Mi=Mi-a. 那么可得N%Mi+a=Mi. 两侧同时对Mi取余,可得(N+a)%Mi=0. 将N+a看成一个变量,就可以把原问题转化成求Mi的LCM,最后减去a即可. #inc ...

  7. HDU 1788 Chinese remainder theorem again

    题目链接 题意 : 中文题不详述. 思路 : 由N%Mi=(Mi-a)可得(N+a)%Mi=0;要取最小的N即找Mi的最小公倍数即可. #include <cstdio> #include ...

  8. HDU 1788 Chinese remainder theorem again 中国剩余定理

    题意: 给定n,AA 以下n个数m1,m2···mn 则有n条方程 res % m1 = m1-AA res % m2 = m2-AA 问res的最小值 直接上剩余定理,嘿嘿 #include< ...

  9. Chinese remainder theorem

    https://en.wikipedia.org/wiki/Chinese_remainder_theorem http://planetmath.org/ChineseRemainderTheore ...

随机推荐

  1. 【转】MySQL性能优化的最佳21条经验

    文章转自: http://blog.csdn.net/waferleo/article/details/7179009 今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关 ...

  2. SQL Server监控报警架构_如何添加报警

    一.数据库邮件报警介绍 数据库邮件是从SQL Server数据库引擎发送电子邮件企业解决方案,使用简单传输协议(SMTP)发送邮件.发送邮件进程与数据库的进程隔离,因此可不用担心影响数据库服务器. 数 ...

  3. permission denied to create extension "hstore"解决方案

    首先 sudo -u postgres psql postgres 进入数据库后输入命令 ALTER USER mydb_user WITH SUPERUSER;        (把某个用户设置为超级 ...

  4. D3.js学习(二)

    上一节中我们已经画出了一个基本的图表,不过忘了给坐标轴添加标签了,所以在本节中我们要给坐标轴加上标签,目标效果如下 给X轴添加标签 很明显,标签是不是一个text内容块啊,所以我们只要在svg中添加一 ...

  5. mysql 中基础英语单词 (一)关于数据库创建与查找 (包括简写单词)

    create 创建             limit 限制        count  计算     rollup  几上归纳 drop   降下,撤销                       ...

  6. VS2010+Qt5.4.0 环境搭建(离线安装)

    原创作者:http://blog.csdn.net/solomon1558/article/details/44084969 前言 因项目需要Qt开发GUI,我根据网上资料及自己的经验整理了搭建vs2 ...

  7. CSS3学习基本记录

    CSS3 边框 border-radius: 圆角 border-radius: 15px 50px 70px 100px; 左上 右上 右下 左下 box-shadow:阴影 box-shadow: ...

  8. php 路径

    //魔术变量,获取当前文件的绝对路径 echo "__FILE__: ========> ".__FILE__; echo '<br/>'; //魔术变量,获取当 ...

  9. 高性能MySQL(一):基本数据类型

    更多交流及资料,请加群 :

  10. css文件 引用后不起作用

    你如果填写的是相对路径,那么检查一下路径是否正确. 如果相对路径正确,那么有可能你的css样式的层级错误(概率也不低),比如说图片的引用路径发生了改变等等. 要看你预览的浏览器是什么,我经常遇到IE预 ...