https://loj.ac/problem/526

题目描述

qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两个元素 i,j 均满足条件 gcd(ai,aj)×gcd(ai+1,aj+1)≠1,其中gcd(i,j)表示最大公约数,且这个子集的元素个数是所有满足上述条件的子集中最多的。输出这个子集的元素个数。

输入格式

输入的第一行包含一个正整数nnn。 随后nnn行,每行一个正整数aia_ia​i​​。

输出格式

输出一个整数代表符合条件的元素最多的子集的元素个数。

样例

样例输入1

4
4
6
1
9

样例输出1

3

样例解释

选择的子集为{1,2,4}\{1,2,4\}{1,2,4}。

样例输入2

41
71
3
5
50
75
2
19
47
88
95
92
110
111
117
58
124
130
57
129
168
161
29
39
206
79
10
142
107
209
210
222
221
223
242
104
264
265
202
279
314
315

样例输出2

22

奇数和奇数、偶数和偶数一定可以选在一起
所以对于不满足条件的奇数和偶数,连边
求最大点独立集
即点数-匹配数
#include<cstdio>
#include<iostream>
#define N 501
using namespace std;
typedef long long LL;
int n;
LL a[N],b[N];
bool g[N][N],vis[N];
int match[N];
void read(int &x)
{
x=; int f=; char c=getchar();
while(!isdigit(c)) { if(c=='-') f=-; c=getchar(); }
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
x*=f;
}
void read(LL &x)
{
x=; int f=; char c=getchar();
while(!isdigit(c)) { if(c=='-') f=-; c=getchar(); }
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
x*=f;
}
inline LL gcd(LL p,LL q) { return !q ? p : gcd(q,p%q); }
bool go(int now)
{
for(int i=;i<=b[];i++)
{
if(vis[i] || !g[now][i]) continue;
vis[i]=true;
if(!match[i] || go(match[i]))
{
match[i]=now;
return true;
}
}
return false;
}
int main()
{
read(n);
LL x;
for(int i=;i<=n;i++)
{
read(x);
(x& ? a[++a[]] : b[++b[]])=x;
}
for(int i=;i<=a[];i++)
for(int j=;j<=b[];j++)
if(gcd(a[i],b[j])== && gcd(a[i]+,b[j]+)==) g[i][j]=true;
int sum=;
for(int i=;i<=a[];i++)
{
fill(vis+,vis+b[]+,);
if(go(i)) sum++;
}
printf("%d",n-sum);
}


「LibreOJ β Round #4」子集的更多相关文章

  1. [LOJ#526]「LibreOJ β Round #4」子集

    [LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...

  2. LibreOJ #526. 「LibreOJ β Round #4」子集

    二次联通门 : LibreOJ #526. 「LibreOJ β Round #4」子集 /* LibreOJ #526. 「LibreOJ β Round #4」子集 考虑一下,若两个数奇偶性相同 ...

  3. LOJ526「LibreOJ β Round #4」子集

    题目 算是比较裸的题吧. 首先我们把符合要求的\((i,j)\)建一条边,那么我们要求的就是最大团. 转化为补图的最小独立集. 然后我们来证明补图是一个二分图. \((u,v)\)有边\(\Leftr ...

  4. loj #547. 「LibreOJ β Round #7」匹配字符串

    #547. 「LibreOJ β Round #7」匹配字符串   题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...

  5. [LOJ#531]「LibreOJ β Round #5」游戏

    [LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...

  6. [LOJ#530]「LibreOJ β Round #5」最小倍数

    [LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...

  7. [LOJ#516]「LibreOJ β Round #2」DP 一般看规律

    [LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...

  8. [LOJ#515]「LibreOJ β Round #2」贪心只能过样例

    [LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...

  9. [LOJ#525]「LibreOJ β Round #4」多项式

    [LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...

随机推荐

  1. 第七次作业PSP

    psp 进度条 代码累积折线图 博文累积折线图 psp饼状图

  2. Right-BICEP 测试四则运算程序

    测试方法:      Right-BICEP 测试计划: 1.边界测试是否正确 2.负数表示是否实现 3.是否有乘除法 4.是否可以选择题目数量 5.是否有输出方式 6.是否有括号 7.是否有重复查询 ...

  3. Codeforces Round #312 (Div. 2) E. A Simple Task 线段树+计数排序

    题目链接: http://codeforces.com/problemset/problem/558/E E. A Simple Task time limit per test5 secondsme ...

  4. BETA阶段第一天

    1.提供当天站立式会议照片一张 2.每个人的工作 今天完成工作 林一心 服务器调试 张杭镖 数据库调整 赵意 前端设计 江鹭涛 前端设计 3.发布项目燃尽图 4.每日每人总结 林一心:服务器端的配置不 ...

  5. MDL详解

    以下的虚拟内存可以理解成逻辑内存,因为我觉得只有这样才能讲通下面所有的东西.以下的“未分页”指没有为页进行编码. 以下为MDL结构体(我很郁闷,我在MSDN上没有找到这个结构体) typedef st ...

  6. PAT 甲级 1019 General Palindromic Number

    https://pintia.cn/problem-sets/994805342720868352/problems/994805487143337984 A number that will be ...

  7. jQuery的滚动监听

    jQuery的滚动监听 1.当前滚动的地方的窗口顶端到整个页面顶端的距离: var winPos = $(window).scrollTop(); 2.获取指定元素的页面位置: $(val).offs ...

  8. UVA11734_Big Number of Teams will Solve This

    题意很简单,本身也是个水题. 给你两个字符串,如果两个串完全相同,那么输出yes:如果两串只是空格的不同,出去空格后完全相同,那么输出Output Format Error,否则输出Wrong Ans ...

  9. C++解析(31):自定义内存管理(完)

    0.目录 1.遗失的关键字mutable 2.new / delete 3.new[] / delete[] 4.小结 5.C++语言学习总结 1.遗失的关键字mutable 笔试题: 统计对象中某个 ...

  10. [bzoj3238]差异(后缀数组+单调栈)

    显然我们可以先把len(Ti)+len(Tj)的值先算出来,再把LCP减去.所有len(Ti)+len(Tj)的值为n*(n-1)*(n+1)/2,这个随便在纸上画一画就可以算出来的. 接下来问题就是 ...