「LibreOJ β Round #4」子集
https://loj.ac/problem/526
题目描述
qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两个元素 i,j 均满足条件 gcd(ai,aj)×gcd(ai+1,aj+1)≠1,其中gcd(i,j)表示最大公约数,且这个子集的元素个数是所有满足上述条件的子集中最多的。输出这个子集的元素个数。
输入格式
输入的第一行包含一个正整数nnn。 随后nnn行,每行一个正整数aia_iai。
输出格式
输出一个整数代表符合条件的元素最多的子集的元素个数。
样例
样例输入1
4
4
6
1
9
样例输出1
3
样例解释
选择的子集为{1,2,4}\{1,2,4\}{1,2,4}。
样例输入2
41
71
3
5
50
75
2
19
47
88
95
92
110
111
117
58
124
130
57
129
168
161
29
39
206
79
10
142
107
209
210
222
221
223
242
104
264
265
202
279
314
315
样例输出2
22
奇数和奇数、偶数和偶数一定可以选在一起
所以对于不满足条件的奇数和偶数,连边
求最大点独立集
即点数-匹配数
#include<cstdio>
#include<iostream>
#define N 501
using namespace std;
typedef long long LL;
int n;
LL a[N],b[N];
bool g[N][N],vis[N];
int match[N];
void read(int &x)
{
x=; int f=; char c=getchar();
while(!isdigit(c)) { if(c=='-') f=-; c=getchar(); }
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
x*=f;
}
void read(LL &x)
{
x=; int f=; char c=getchar();
while(!isdigit(c)) { if(c=='-') f=-; c=getchar(); }
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
x*=f;
}
inline LL gcd(LL p,LL q) { return !q ? p : gcd(q,p%q); }
bool go(int now)
{
for(int i=;i<=b[];i++)
{
if(vis[i] || !g[now][i]) continue;
vis[i]=true;
if(!match[i] || go(match[i]))
{
match[i]=now;
return true;
}
}
return false;
}
int main()
{
read(n);
LL x;
for(int i=;i<=n;i++)
{
read(x);
(x& ? a[++a[]] : b[++b[]])=x;
}
for(int i=;i<=a[];i++)
for(int j=;j<=b[];j++)
if(gcd(a[i],b[j])== && gcd(a[i]+,b[j]+)==) g[i][j]=true;
int sum=;
for(int i=;i<=a[];i++)
{
fill(vis+,vis+b[]+,);
if(go(i)) sum++;
}
printf("%d",n-sum);
}
「LibreOJ β Round #4」子集的更多相关文章
- [LOJ#526]「LibreOJ β Round #4」子集
[LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...
- LibreOJ #526. 「LibreOJ β Round #4」子集
二次联通门 : LibreOJ #526. 「LibreOJ β Round #4」子集 /* LibreOJ #526. 「LibreOJ β Round #4」子集 考虑一下,若两个数奇偶性相同 ...
- LOJ526「LibreOJ β Round #4」子集
题目 算是比较裸的题吧. 首先我们把符合要求的\((i,j)\)建一条边,那么我们要求的就是最大团. 转化为补图的最小独立集. 然后我们来证明补图是一个二分图. \((u,v)\)有边\(\Leftr ...
- loj #547. 「LibreOJ β Round #7」匹配字符串
#547. 「LibreOJ β Round #7」匹配字符串 题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
- [LOJ#525]「LibreOJ β Round #4」多项式
[LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...
随机推荐
- 阅读笔记《我是一只IT小小鸟》
我是一只IT小小鸟 我们在尝试新的事物的时候,总是会遇到各种各样的困难,不同的人会在碰壁不同的次数之后退出.用程序员喜欢的话来说就是,我们都在for循环,区别在于你是什么情况下break;的.有的人退 ...
- BundleCollection学习(一)
工作中有同事提到了mvc4提供了css,js压缩功能.类BundleCollection所以搜集资料记录学习下. 学习中………… MVC中用 BundleCollection 压缩CSS时图片路径问题 ...
- lintcode-413-反转整数
413-反转整数 将一个整数中的数字进行颠倒,当颠倒后的整数溢出时,返回 0 (标记为 32 位整数). 样例 给定 x = 123,返回 321 给定 x = -123,返回 -321 标签 整数 ...
- HDFS shell命令行常见操作
hadoop学习及实践笔记—— HDFS shell命令行常见操作 附:HDFS shell guide文档地址 http://hadoop.apache.org/docs/r2.5.2/hadoop ...
- Windows下多线程编程(一)
前言 熟练掌握Windows下的多线程编程,能够让我们编写出更规范多线程代码,避免不要的异常.Windows下的多线程编程非常复杂,但是了解一些常用的特性,已经能够满足我们普通多线程对性能及其他要求. ...
- 【C++】为多态基类声明virtual析构函数
来自<Effective C++>条款07:为多态声明virtual析构函数 当derived class对象经由一个base class指针被删除,而该base class带着一个non ...
- 整合SSM框架应用
普通方式 新建spring模块时引入如下内容: 启用devtools插件(热部署插件) idea需要做如下配置 settings-build-compiler->勾选build project ...
- android面试(1)----布局
1.说出android 五中布局,并说出各自作用? FrameLayout: 堆叠布局,也是就可以堆在一起.最长应用于Fragment的使用上. LinearLayout: 线性布局,可以是竖排或水平 ...
- 题解 P1808 【单词分类_NOI导刊2011提高(01)】
大家用的方法都太好了!! 蒟蒻小金羊来发一篇玄学堆排. STL大法好! (附有核心code详解,完整code) 核心:两次排序,第一次自我排序,第二次整体排序. 核心code1: string str ...
- Spring Batch @SpringBatchTest 注解
Spring Batch 提供了一些非常有用的工具类(例如 JobLauncherTestUtils 和 JobRepositoryTestUtils)和测试执行监听器(StepScopeTestEx ...