Luogu5249

轮流开枪打一个环上的人 , 每次\(p\)的概率打死 , \(p\)始终相同 , 从第\(1\)个人开始 , 求第\(k\)个人成为唯一幸存者的概率


\(19.3.30\)

官方题解先递推出\(f[n]\) , \(f[1]\)用到\(f[n]\) , 套上一个\(n\)的循环 , 总共是\(O(n^2)\)的

设\(f1[i]\)表示\([1,k-1]\)在\(i\)轮以内全死的概率 , \(f2[i]\)表示\([k+1,n]\)在\(i\)轮以内全死的概率 ,

\(s[i]\)表示某一个人在\(i\)轮以内死掉的概率 , 易知\(s[i]=1-(1-p)^i\)

\(f1[i]=s[i]^{(k-1)}\)

\(f2[i]=s[i]^{(n-k)}\)

枚举第\(k\)个人第\(i\)轮死 , \(ans=\sum{f1[i]*f2[i-1]*(s[i]-s[i-1])}\)

\(10^4\)个人枚举\(10^6\)轮就差不多了 , \(f1\)和\(f2\)的预处理是\(O(nl_{og}n)\)的


\(19.4.4\)

首先可以容易地得出某一个人在\(i\)轮以内死掉的概率\(s[i]=1-(1-p)^i\) , 以及在第\(i\)轮死掉的概率\(s[i]-s[i-1]\)

也许就能推出连续一段人在\(i\)轮死掉的概率\(s[i]^{r-l+1}\)

考虑怎么枚举比较方便 : 枚举自己在第\(i\)轮死 ,

那么在此之前其他的都要死 , 即前面的要在\(i\)轮内死 , 后面的要在\(i-1\)轮内死

枚举自己的状态 , 考虑前面和后面要满足的条件 , 参考[JSOI2018]机器人

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+7;
int n,k;
double p,sp,ans,s[N],pw1[N],pw2[N];
double qpow(double a,int b)
{
double ret=1;
while(b)
{
if(b&1)ret*=a;
a*=a,b>>=1;
}
return ret;
}
int main()
{
cin>>p>>n>>k;
if(n==1){cout<<1;return 0;}
for(int i=1;i<=1e5;i++)s[i]=1-qpow(1-p,i);
for(int i=1;i<=1e5;i++)pw1[i]=qpow(s[i],k-1),pw2[i]=qpow(s[i],n-k);
for(int i=1;i<=1e5;i++)
if(k==n)ans+=pw1[i]*(s[i]-s[i-1]);
else if(k==1)ans+=pw2[i-1]*(s[i]-s[i-1]);
else ans+=pw1[i]*pw2[i-1]*(s[i]-s[i-1]);
printf("%0.9f",ans);
}

[LnOI2019]加特林轮盘赌的更多相关文章

  1. [LnOI2019]加特林轮盘赌(DP,概率期望)

    [LnOI2019]加特林轮盘赌(DP,概率期望) 题目链接 题解: 首先特判掉\(p=0/1\)的情况... 先考虑如果\(k=1\)怎么做到\(n^2\)的时间复杂度 设\(f[i]\)表示有\( ...

  2. 洛谷 P5249 [LnOI2019]加特林轮盘赌 题解【概率期望】【DP】

    很有意思的题目. 题目背景 加特林轮盘赌是一个养生游戏. 题目描述 与俄罗斯轮盘赌等手枪的赌博不同的是,加特林轮盘赌的赌具是加特林. 加特林轮盘赌的规则很简单:在加特林的部分弹夹中填充子弹.游戏的参加 ...

  3. 洛谷 P5249 - [LnOI2019]加特林轮盘赌(期望 dp+高斯消元)

    题面传送门 期望真 nm 有意思,所以蒟蒻又来颓期望辣 先特判掉 \(P_0=0\) 的情况,下面假设 \(P_0\ne 0\). 首先注意到我们每次将加特林对准一个人,如果这个人被毙掉了,那么相当于 ...

  4. [JSOI2018]机器人

    [Luogu4558] [LOJ2550] \(19.3.25\) JSOI2018简要题解 - FallDream 规律就是 对于\(n=m\)我们每一条左下到右上的对角线上的点的走法都是一样的且每 ...

  5. 洛谷[LnOI2019]长脖子鹿省选模拟赛 简要题解

    传送门 听说比赛的时候T4T4T4标程锅了??? WTF换我时间我要写T3啊 于是在T4T4T4调半天无果的情况下260pts260pts260pts收场真的是tcltcltcl. T1 快速多项式变 ...

  6. [luogu#2019/03/10模拟赛][LnOI2019]长脖子鹿省选模拟赛赛后总结

    t1-快速多项式变换(FPT) 题解 看到这个\(f(x)=a_0+a_1x+a_2x^2+a_3x^3+ \cdots + a_nx^n\)式子,我们会想到我们学习进制转换中学到的,那么我们就只需要 ...

  7. 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解

    今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...

  8. LNOI2019划水记

    十二省联考命题组温馨提醒您: 数据千万条,清空第一条. 多测不清空,爆零两行泪. NOIp2018差点退役的游记 $Flag$拔了. $LNOI2019$划水记: $Day0$: 早上八点起床,一直颓 ...

  9. 魂酥的LNOI2019滚粗记

    $Day -???$ 高一下终于开始了 在开学文化课考试的水题之下混了个(成绩)前排 于是我便油然而生一种自信 我!要!进!省!队! 讲句真话我这么想的时候连自己都觉得自己是个十足的沙雕 我又不是zw ...

随机推荐

  1. CF 438E The Child and Binary Tree

    BZOJ 3625 吐槽 BZOJ上至今没有卡过去,太慢了卡得我不敢交了…… 一件很奇怪的事情就是不管是本地还是自己上传数据到OJ测试都远远没有到达时限. 本题做法 设$f_i$表示权值为$i$的二叉 ...

  2. code1319 玩具装箱

    一个划分dp,不过由于划分个数任意,仅用一维数组就可以 设dp[i]表示前i个装箱(任意个箱子)的费用最小值 dp[i]=min(dp[u]+cost(u+1,i)) 但是n<=50000,n方 ...

  3. ubuntu14.04下安装qt5

    1.sudo apt-get install build-essential 2.先打开终端快捷键ctrl+t 3. 然后输入: sudo apt-get install cmake qt5-defa ...

  4. Spring 注解 整理

    首先 在xml中配置 xmlns:context="http://www.springframework.org/schema/context" http://www.spring ...

  5. ThreadLocal深入理解

    作者:知乎用户链接:https://www.zhihu.com/question/23089780/answer/62097840来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...

  6. 手动添加ceph的mds

    1.在需要安装的目标机器上创建mds目录 mkdir -p / 2.生成mds的keyring,并将其写入/var/lib/ceph/mds/ceph-0/keyring文件中 ceph auth g ...

  7. UVa 11090 Going in Cycle!! (Bellman_Ford)

    题意:给定一个加权有向图,求平均权值最小的回路. 析:先十分答案,假设答案是 ans,那么有这么一个回路,w1+w2+w3+...+wk < k*ans,这样就是答案太大,然后移项可得,(w1- ...

  8. C# Timer 用法

    System.Timers.Timer,通过.NET  Thread  Pool实现的,轻量,计时精确,对应用程序.消息没有特别的要求. using Timer = System.Timers.Tim ...

  9. logback 配置详解——logger、root

    目录 1.根节点包含的属性 2.根节点的子节点 2.1.设置上下文名称: 2.2.设置loger.root 正文 回到顶部 1.根节点<configuration>包含的属性 scan: ...

  10. logback-spring.xml配置文件详解

    logback-spring.xml配置文件 自己改下value="G:/logs/pmp"这个值,如果你相关依赖弄好的话,直接复制粘贴即用 输出的日志文件的名称最好也改下,下文中 ...