用10张图来看机器学习Machine learning in 10 pictures
I find myself coming back to the same few pictures when explaining basic machine learning concepts. Below is a list I find most illuminating.

1. Test and training error: Why lower training error is not always a good thing: ESL Figure 2.11. Test and training error as a function of model complexity.

2. Under and overfitting: PRML Figure 1.4. Plots of polynomials having various orders M, shown as red curves, fitted to the data set generated by the green curve.

3. Occam's razor: ITILA Figure 28.3. Why Bayesian inference embodies Occam’s razor. This figure gives the basic intuition for why complex models can turn out to be less probable. The horizontal axis represents the space of possible data sets D. Bayes’ theorem rewards models in proportion to how much they predicted the data that occurred. These predictions are quantified by a normalized probability distribution on D. This probability of the data given model Hi, P (D | Hi), is called the evidence for Hi. A simple model H1 makes only a limited range of predictions, shown by P(D|H1); a more powerful model H2, that has, for example, more free parameters than H1, is able to predict a greater variety of data sets. This means, however, that H2 does not predict the data sets in region C1 as strongly as H1. Suppose that equal prior probabilities have been assigned to the two models. Then, if the data set falls in region C1, the less powerful model H1 will be the more probable model.

4. Feature combinations: (1) Why collectively relevant features may look individually irrelevant, and also (2) Why linear methods may fail. From Isabelle Guyon's feature extraction slides.
.png)
5. Irrelevant features: Why irrelevant features hurt kNN, clustering, and other similarity based methods. The figure on the left shows two classes well separated on the vertical axis. The figure on the right adds an irrelevant horizontal axis which destroys the grouping and makes many points nearest neighbors of the opposite class.

6. Basis functions: How non-linear basis functions turn a low dimensional classification problem without a linear boundary into a high dimensional problem with a linear boundary. From SVM tutorial slides by Andrew Moore: a one dimensional non-linear classification problem with input x is turned into a 2-D problem z=(x, x^2) that is linearly separable.

7. Discriminative vs. Generative: Why discriminative learning may be easier than generative: PRML Figure 1.27. Example of the class-conditional densities for two classes having a single input variable x (left plot) together with the corresponding posterior probabilities (right plot). Note that the left-hand mode of the class-conditional density p(x|C1), shown in blue on the left plot, has no effect on the posterior probabilities. The vertical green line in the right plot shows the decision boundary in x that gives the minimum misclassification rate.

8. Loss functions: Learning algorithms can be viewed as optimizing different loss functions: PRML Figure 7.5. Plot of the ‘hinge’ error function used in support vector machines, shown in blue, along with the error function for logistic regression, rescaled by a factor of 1/ln(2) so that it passes through the point (0, 1), shown in red. Also shown are the misclassification error in black and the squared error in green.

9. Geometry of least squares: ESL Figure 3.2. The N-dimensional geometry of least squares regression with two predictors. The outcome vector y is orthogonally projected onto the hyperplane spanned by the input vectors x1 and x2. The projection yˆ represents the vector of the least squares predictions.

10. Sparsity: Why Lasso (L1 regularization or Laplacian prior) gives sparse solutions (i.e. weight vectors with more zeros): ESL Figure 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions |β1| + |β2| ≤ t and β12 + β22 ≤ t2, respectively, while the red ellipses are the contours of the least squares error function.
from: http://www.denizyuret.com/2014/02/machine-learning-in-5-pictures.html
用10张图来看机器学习Machine learning in 10 pictures的更多相关文章
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- 机器学习(Machine Learning)&深入学习(Deep Learning)资料
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料汇总 (上)
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Ma ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...
- 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
随机推荐
- 完美解决doc、docx格式word转换为Html
http://blog.csdn.net/renzhehongyi/article/details/48767597
- 【LOJ】 #2009. 「SCOI2015」小凸玩密室
题解 神仙dp啊QAQ 我们发现我们需要枚举一个起点,遍历完它所有的儿子然后向上爬 设\(f[i][j]\)表示第i个点的子树全部处理完之后到达i深度为j的祖先的兄弟处 我们只需要对叶子节点和只有一个 ...
- Good Bye 2014 E - New Year Domino 单调栈+倍增
E - New Year Domino 思路:我用倍增写哒,离线可以不用倍增. #include<bits/stdc++.h> #define LL long long #define f ...
- ul>li中自定义属性后取值的问题
动态赋值的li: $.ajax({ type: "POST", url: "${base}/before/subDemand/listType", succes ...
- thinkphp5.0环境变量配置
允许使用环境变量配置,并且优先级别比在配置文件中要高,因为在读取配置参数的时候,首先会判断环境变量中是否存在该配置. 在开发过程中,可以在应用根目录下面的.env来模拟环境变量配置,.env文件中的配 ...
- python笔记11-多线程之Condition(条件变量)
前言 当小伙伴a在往火锅里面添加鱼丸,这个就是生产者行为:另外一个小伙伴b在吃掉鱼丸就是消费者行为.当火锅里面鱼丸达到一定数量加满后b才能吃,这就是一种条件判断了. 这就是本篇要讲的Condition ...
- ARM开发板搭建NFS网络文件共享方法
前边 已经提到过吧vmare的IP改成了静态IP,对于上网来说,这个是个麻烦的事.现在重新配置Vmware的IP VMware-Edit-Virtual network editor 选择PC机的无线 ...
- spring完成自动装配
让spring完成自动装配 Autowiring 解决标签为javaBean注入时难以维护而实现的 下面是几种autowire type的说明: 1,byname:试图在容器中寻找和需要自动装配的属性 ...
- shell中的cat和文件分界符(<<EOF) (转)
原文地址: http://blog.csdn.net/mosesmo1989/article/details/51123257 在shell中,文件分界符(通常写成EOF,你也可以写成FOE或者其他任 ...
- C和指针之学习笔记(1)
第1章 1.输入字符串 while((ch=getchar())!=EOF && ch!=’\n’) ; ch=getchar() while(ch!=EOF && ...