/*
poj 3130 How I Mathematician Wonder What You Are! - 求多边形有没有核 */
#include <stdio.h>
#include<math.h>
const double eps=1e-8;
const int N=103;
struct point
{
double x,y;
}dian[N];
inline bool mo_ee(double x,double y)
{
double ret=x-y;
if(ret<0) ret=-ret;
if(ret<eps) return 1;
return 0;
}
inline bool mo_gg(double x,double y) { return x > y + eps;} // x > y
inline bool mo_ll(double x,double y) { return x < y - eps;} // x < y
inline bool mo_ge(double x,double y) { return x > y - eps;} // x >= y
inline bool mo_le(double x,double y) { return x < y + eps;} // x <= y
inline double mo_xmult(point p2,point p0,point p1)//p1在p2左返回负,在右边返回正
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
} point mo_intersection(point u1,point u2,point v1,point v2)
{
point ret=u1;
double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
ret.x+=(u2.x-u1.x)*t;
ret.y+=(u2.y-u1.y)*t;
return ret;
}
///////////////////////// //切割法求半平面交
point mo_banjiao_jiao[N*2];
point mo_banjiao_jiao_temp[N*2];
void mo_banjiao_cut(point *ans,point qian,point hou,int &nofdian)
{
int i,k;
for(i=k=0;i<nofdian;++i)
{
double a,b;
a=mo_xmult(hou,ans[i],qian);
b=mo_xmult(hou,ans[(i+1)%nofdian],qian);
if(mo_ge(a,0))//顺时针就是<=0
{
mo_banjiao_jiao_temp[k++]=ans[i];
}if(mo_ll(a*b,0))
{
mo_banjiao_jiao_temp[k++]=mo_intersection(qian,hou,ans[i],ans[(i+1)%nofdian]);
}
}
for(i=0;i<k;++i)
{
ans[i]=mo_banjiao_jiao_temp[i];
}
nofdian=k;
}
int mo_banjiao(point *dian,int n)
{
int i,nofdian;
nofdian=n;
for(i=0;i<n;++i)
{
mo_banjiao_jiao[i]=dian[i];
}
for(i=0;i<n;++i)//i从0开始
{
mo_banjiao_cut(mo_banjiao_jiao,dian[i],dian[(i+1)%n],nofdian);
if(nofdian==0)
{
return nofdian;
}
}
return nofdian;
}
/////////////////////////
int main()
{
int t,i,n;
while(scanf("%d",&n),n)
{ for(i=0;i<n;++i)
{
scanf("%lf%lf",&dian[i].x,&dian[i].y);
}
int ret=mo_banjiao(dian,n);
if(ret==0)
{
printf("0\n");
}else
{
printf("1\n");
}
}
return 0;
}
/*
为什么ret<3?
*/
#include<stdio.h>
#include<math.h>
#include <algorithm>
using namespace std; const double eps=1e-8;
struct point
{
double x,y;
}dian[20000+10];
point jiao[203];
struct line
{
point s,e;
double angle;
}xian[20000+10];
int n,yong;
bool mo_ee(double x,double y)
{
double ret=x-y;
if(ret<0) ret=-ret;
if(ret<eps) return 1;
return 0;
}
bool mo_gg(double x,double y) { return x > y + eps;} // x > y
bool mo_ll(double x,double y) { return x < y - eps;} // x < y
bool mo_ge(double x,double y) { return x > y - eps;} // x >= y
bool mo_le(double x,double y) { return x < y + eps;} // x <= y
point mo_intersection(point u1,point u2,point v1,point v2)
{
point ret=u1;
double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
ret.x+=(u2.x-u1.x)*t;
ret.y+=(u2.y-u1.y)*t;
return ret;
}
double mo_xmult(point p2,point p0,point p1)//p1在p2左返回负,在右边返回正
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
} void mo_HPI_addl(point a,point b)
{
xian[yong].s=a;
xian[yong].e=b;
xian[yong].angle=atan2(b.y-a.y,b.x-a.x);
yong++;
}
//半平面交
bool mo_HPI_cmp(const line& a,const line& b)
{
if(mo_ee(a.angle,b.angle))
{
return mo_gg( mo_xmult(b.e,a.s,b.s),0);
}else
{
return mo_ll(a.angle,b.angle);
}
}
int mo_HPI_dq[20000+10];
bool mo_HPI_isout(line cur,line top,line top_1)
{
point jiao=mo_intersection(top.s,top.e,top_1.s,top_1.e);
return mo_ll( mo_xmult(cur.e,jiao,cur.s),0);//若顺时针时应为mo_gg
}
int mo_HalfPlaneIntersect(line *xian,int n,point *jiao)
{
int i,j,ret=0;
sort(xian,xian+n,mo_HPI_cmp);
for (i = 0, j = 0; i < n; i++)
{
if (mo_gg(xian[i].angle,xian[j].angle))
{
xian[++j] = xian[i];
}
}
n=j+1;
mo_HPI_dq[0]=0;
mo_HPI_dq[1]=1;
int top=1,bot=0;
for (i = 2; i < n; i++)
{
while (top > bot && mo_HPI_isout(xian[i], xian[mo_HPI_dq[top]], xian[mo_HPI_dq[top-1]])) top--;
while (top > bot && mo_HPI_isout(xian[i], xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[bot+1]])) bot++;
mo_HPI_dq[++top] = i; //当前半平面入栈
}
while (top > bot && mo_HPI_isout(xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[top]], xian[mo_HPI_dq[top-1]])) top--;
while (top > bot && mo_HPI_isout(xian[mo_HPI_dq[top]], xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[bot+1]])) bot++;
mo_HPI_dq[++top] = mo_HPI_dq[bot];
for (ret = 0, i = bot; i < top; i++, ret++)
{
jiao[ret]=mo_intersection(xian[mo_HPI_dq[i+1]].s,xian[mo_HPI_dq[i+1]].e,xian[mo_HPI_dq[i]].s,xian[mo_HPI_dq[i]].e);
}
return ret;
}
int main()
{
int i;
while(scanf("%d",&n),n)
{
yong=0;
for(i=0;i<n;++i)
{
scanf("%lf%lf",&dian[i].x,&dian[i].y);
}
for(i=0;i<n;++i)
{
mo_HPI_addl(dian[i],dian[(i+1)%n]);
}
int ret=mo_HalfPlaneIntersect(xian,n,jiao);
if(ret<3)
{
printf("0\n");
}else
{
printf("1\n");
}
}
return 0;
}

poj 3130 How I Mathematician Wonder What You Are! - 求多边形有没有核 - 模版的更多相关文章

  1. POJ 3130 How I Mathematician Wonder What You Are! (半平面交)

    题目链接:POJ 3130 Problem Description After counting so many stars in the sky in his childhood, Isaac, n ...

  2. POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交

    题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...

  3. poj 1474 Video Surveillance - 求多边形有没有核

    /* poj 1474 Video Surveillance - 求多边形有没有核 */ #include <stdio.h> #include<math.h> const d ...

  4. poj 3130 How I Mathematician Wonder What You Are!

    http://poj.org/problem?id=3130 #include <cstdio> #include <cstring> #include <algorit ...

  5. POJ 3130 How I Mathematician Wonder What You Are! (半平面相交)

    Description After counting so many stars in the sky in his childhood, Isaac, now an astronomer and a ...

  6. POJ 3130 How I Mathematician Wonder What You Are!(半平面交求多边形的核)

    题目链接 题意 : 给你一个多边形,问你该多边形中是否存在一个点使得该点与该多边形任意一点的连线都在多边形之内. 思路 : 与3335一样,不过要注意方向变化一下. #include <stdi ...

  7. poj 3130 How I Mathematician Wonder What You Are! 【半平面交】

    求多边形的核,直接把所有边求半平面交判断有无即可 #include<iostream> #include<cstdio> #include<algorithm> # ...

  8. POJ 1279 Art Gallery【半平面交】(求多边形的核)(模板题)

    <题目链接> 题目大意: 按顺时针顺序给出一个N边形,求N边形的核的面积. (多边形的核:它是平面简单多边形的核是该多边形内部的一个点集该点集中任意一点与多边形边界上一点的连线都处于这个多 ...

  9. 三道半平面交测模板题 Poj1474 Poj 3335 Poj 3130

    求半平面交的算法是zzy大神的排序增量法. ///Poj 1474 #include <cmath> #include <algorithm> #include <cst ...

随机推荐

  1. Python 一些 实用的包(持续更新)

    line_profiler:(代码性能分析) 使用方法:链接 codecs:(Python内置的编码库) 数据分析与挖掘领域: 引自博客:这里     因为他有很多这个领域相关的库可以用,而且很好用, ...

  2. CoreOS中随着系统启动Docker Container

    Start containers automatically https://docs.docker.com/engine/admin/host_integration/ https://www.fr ...

  3. ElasticSearch部署文档(Ubuntu 14.04)

    ElasticSearch部署文档(Ubuntu 14.04) 参考链接 https://www.elastic.co/guide/en/elasticsearch/guide/current/hea ...

  4. react篇章-React 组件-ES6 class 来定义一个组件

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <title&g ...

  5. Ocelot网关统一查看多个微服务asp.net core项目的swagger API接口

    0.前言 整体架构目录:ASP.NET Core分布式项目实战-目录 一.准备 前提需要下载安装consul,项目需要懂添加swagger 统一在网关中配置多个微服务的swagger,需要用到服务注册 ...

  6. 【Leetcode】583. Delete Operation for Two Strings

    583. Delete Operation for Two Strings Given two words word1 and word2, find the minimum number of st ...

  7. (VIJOS) VOJ 1067 Warcraft III 守望者的烦恼 矩阵快速幂

    https://vijos.org/p/1067   就..挺普通的一道题..自己学一下怎么推式子就可以...细节不多但是我还是日常爆细节..比如说循环写成从负数开始...   只求ac不求美观的丑陋 ...

  8. [CF226E]Noble Knight's Path

    [CF226E]Noble Knight's Path 题目大意: 一棵\(n(n\le10^5)\)个结点的树,初始时所有结点都是白色.\(m(m\le10^5)\)次操作,操作包含以下两种: 将点 ...

  9. django-附件上传、media、extra、事务

    1 普通上传 1.1 html <form action="/index/" method="post" enctype="multipart/ ...

  10. Problem A: 深入浅出学算法002-n个1

    Description 由n个1组成的整数能被K(K<10000)整除,n至少为多少? Input 多组测试数据,第一行输入整数T,表示组数 然后是T行,每行输入1个整数代表K Output 对 ...