poj 3130 How I Mathematician Wonder What You Are! - 求多边形有没有核 - 模版
/*
poj 3130 How I Mathematician Wonder What You Are! - 求多边形有没有核 */
#include <stdio.h>
#include<math.h>
const double eps=1e-8;
const int N=103;
struct point
{
double x,y;
}dian[N];
inline bool mo_ee(double x,double y)
{
double ret=x-y;
if(ret<0) ret=-ret;
if(ret<eps) return 1;
return 0;
}
inline bool mo_gg(double x,double y) { return x > y + eps;} // x > y
inline bool mo_ll(double x,double y) { return x < y - eps;} // x < y
inline bool mo_ge(double x,double y) { return x > y - eps;} // x >= y
inline bool mo_le(double x,double y) { return x < y + eps;} // x <= y
inline double mo_xmult(point p2,point p0,point p1)//p1在p2左返回负,在右边返回正
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
} point mo_intersection(point u1,point u2,point v1,point v2)
{
point ret=u1;
double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
ret.x+=(u2.x-u1.x)*t;
ret.y+=(u2.y-u1.y)*t;
return ret;
}
///////////////////////// //切割法求半平面交
point mo_banjiao_jiao[N*2];
point mo_banjiao_jiao_temp[N*2];
void mo_banjiao_cut(point *ans,point qian,point hou,int &nofdian)
{
int i,k;
for(i=k=0;i<nofdian;++i)
{
double a,b;
a=mo_xmult(hou,ans[i],qian);
b=mo_xmult(hou,ans[(i+1)%nofdian],qian);
if(mo_ge(a,0))//顺时针就是<=0
{
mo_banjiao_jiao_temp[k++]=ans[i];
}if(mo_ll(a*b,0))
{
mo_banjiao_jiao_temp[k++]=mo_intersection(qian,hou,ans[i],ans[(i+1)%nofdian]);
}
}
for(i=0;i<k;++i)
{
ans[i]=mo_banjiao_jiao_temp[i];
}
nofdian=k;
}
int mo_banjiao(point *dian,int n)
{
int i,nofdian;
nofdian=n;
for(i=0;i<n;++i)
{
mo_banjiao_jiao[i]=dian[i];
}
for(i=0;i<n;++i)//i从0开始
{
mo_banjiao_cut(mo_banjiao_jiao,dian[i],dian[(i+1)%n],nofdian);
if(nofdian==0)
{
return nofdian;
}
}
return nofdian;
}
/////////////////////////
int main()
{
int t,i,n;
while(scanf("%d",&n),n)
{ for(i=0;i<n;++i)
{
scanf("%lf%lf",&dian[i].x,&dian[i].y);
}
int ret=mo_banjiao(dian,n);
if(ret==0)
{
printf("0\n");
}else
{
printf("1\n");
}
}
return 0;
}
/*
为什么ret<3?
*/
#include<stdio.h>
#include<math.h>
#include <algorithm>
using namespace std; const double eps=1e-8;
struct point
{
double x,y;
}dian[20000+10];
point jiao[203];
struct line
{
point s,e;
double angle;
}xian[20000+10];
int n,yong;
bool mo_ee(double x,double y)
{
double ret=x-y;
if(ret<0) ret=-ret;
if(ret<eps) return 1;
return 0;
}
bool mo_gg(double x,double y) { return x > y + eps;} // x > y
bool mo_ll(double x,double y) { return x < y - eps;} // x < y
bool mo_ge(double x,double y) { return x > y - eps;} // x >= y
bool mo_le(double x,double y) { return x < y + eps;} // x <= y
point mo_intersection(point u1,point u2,point v1,point v2)
{
point ret=u1;
double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
ret.x+=(u2.x-u1.x)*t;
ret.y+=(u2.y-u1.y)*t;
return ret;
}
double mo_xmult(point p2,point p0,point p1)//p1在p2左返回负,在右边返回正
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
} void mo_HPI_addl(point a,point b)
{
xian[yong].s=a;
xian[yong].e=b;
xian[yong].angle=atan2(b.y-a.y,b.x-a.x);
yong++;
}
//半平面交
bool mo_HPI_cmp(const line& a,const line& b)
{
if(mo_ee(a.angle,b.angle))
{
return mo_gg( mo_xmult(b.e,a.s,b.s),0);
}else
{
return mo_ll(a.angle,b.angle);
}
}
int mo_HPI_dq[20000+10];
bool mo_HPI_isout(line cur,line top,line top_1)
{
point jiao=mo_intersection(top.s,top.e,top_1.s,top_1.e);
return mo_ll( mo_xmult(cur.e,jiao,cur.s),0);//若顺时针时应为mo_gg
}
int mo_HalfPlaneIntersect(line *xian,int n,point *jiao)
{
int i,j,ret=0;
sort(xian,xian+n,mo_HPI_cmp);
for (i = 0, j = 0; i < n; i++)
{
if (mo_gg(xian[i].angle,xian[j].angle))
{
xian[++j] = xian[i];
}
}
n=j+1;
mo_HPI_dq[0]=0;
mo_HPI_dq[1]=1;
int top=1,bot=0;
for (i = 2; i < n; i++)
{
while (top > bot && mo_HPI_isout(xian[i], xian[mo_HPI_dq[top]], xian[mo_HPI_dq[top-1]])) top--;
while (top > bot && mo_HPI_isout(xian[i], xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[bot+1]])) bot++;
mo_HPI_dq[++top] = i; //当前半平面入栈
}
while (top > bot && mo_HPI_isout(xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[top]], xian[mo_HPI_dq[top-1]])) top--;
while (top > bot && mo_HPI_isout(xian[mo_HPI_dq[top]], xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[bot+1]])) bot++;
mo_HPI_dq[++top] = mo_HPI_dq[bot];
for (ret = 0, i = bot; i < top; i++, ret++)
{
jiao[ret]=mo_intersection(xian[mo_HPI_dq[i+1]].s,xian[mo_HPI_dq[i+1]].e,xian[mo_HPI_dq[i]].s,xian[mo_HPI_dq[i]].e);
}
return ret;
}
int main()
{
int i;
while(scanf("%d",&n),n)
{
yong=0;
for(i=0;i<n;++i)
{
scanf("%lf%lf",&dian[i].x,&dian[i].y);
}
for(i=0;i<n;++i)
{
mo_HPI_addl(dian[i],dian[(i+1)%n]);
}
int ret=mo_HalfPlaneIntersect(xian,n,jiao);
if(ret<3)
{
printf("0\n");
}else
{
printf("1\n");
}
}
return 0;
}
poj 3130 How I Mathematician Wonder What You Are! - 求多边形有没有核 - 模版的更多相关文章
- POJ 3130 How I Mathematician Wonder What You Are! (半平面交)
题目链接:POJ 3130 Problem Description After counting so many stars in the sky in his childhood, Isaac, n ...
- POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交
题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...
- poj 1474 Video Surveillance - 求多边形有没有核
/* poj 1474 Video Surveillance - 求多边形有没有核 */ #include <stdio.h> #include<math.h> const d ...
- poj 3130 How I Mathematician Wonder What You Are!
http://poj.org/problem?id=3130 #include <cstdio> #include <cstring> #include <algorit ...
- POJ 3130 How I Mathematician Wonder What You Are! (半平面相交)
Description After counting so many stars in the sky in his childhood, Isaac, now an astronomer and a ...
- POJ 3130 How I Mathematician Wonder What You Are!(半平面交求多边形的核)
题目链接 题意 : 给你一个多边形,问你该多边形中是否存在一个点使得该点与该多边形任意一点的连线都在多边形之内. 思路 : 与3335一样,不过要注意方向变化一下. #include <stdi ...
- poj 3130 How I Mathematician Wonder What You Are! 【半平面交】
求多边形的核,直接把所有边求半平面交判断有无即可 #include<iostream> #include<cstdio> #include<algorithm> # ...
- POJ 1279 Art Gallery【半平面交】(求多边形的核)(模板题)
<题目链接> 题目大意: 按顺时针顺序给出一个N边形,求N边形的核的面积. (多边形的核:它是平面简单多边形的核是该多边形内部的一个点集该点集中任意一点与多边形边界上一点的连线都处于这个多 ...
- 三道半平面交测模板题 Poj1474 Poj 3335 Poj 3130
求半平面交的算法是zzy大神的排序增量法. ///Poj 1474 #include <cmath> #include <algorithm> #include <cst ...
随机推荐
- STM32 磁场传感器HMC5883
一.IIC协议 默认(出厂) HMC5883LL 7 位从机地址为0x3C 的写入操作,或0x3D 的读出操作. 要改变测量模式到连续测量模式,在通电时间后传送三个字节:0x3C 0x02 0x00 ...
- html学习-css
1.css初识 css 中文解释:层叠样式表,把html比作骨骼的话,css就是衣服,他的外在都能通过css来修饰,js则是肌肉,能使html动起来.产生用户交互... 1.1css样式表类型 css ...
- jquery文档
http://jquery.cuishifeng.cn/selected_1.html
- Java学习(API及Object类、String类、StringBuffer字符串缓冲区)
一.JAVA的API及Object类 1.API 概念: Java 的API(API: Application(应用) Programming(程序) Interface(接口)) Java API就 ...
- jquery datatable的详细用法
1,首先需要引用下面两个文件 <link rel="stylesheet" href="https://cdn.datatables.net/1.10.16/css ...
- 第七章 用户输入和while语句
大多数编程都旨在解决最终用户的问题,为此通常需要从用户那里获取一些信息.例如,假设有人要判断自己是否到了投票的年龄,要编写回答这个问题的程序,就需要知道用户的年龄,这样才能给出答案.因此,这种程序需要 ...
- Loadrunner脚本开发规范
Loadrunner脚本开发规范 目录 1.一般约定... 3 2.代码注释约定... 4 3.格式化代码... 5 1.一般约定 1.1具体脚本规则,必须在具体代码中加注释,以便脚本开发人员阅读和理 ...
- checkbox 更改样式
html: <div class="wrap"> <p>1. 勾选</p> <input type="checkbox" ...
- ThinkPHP3.2.3 PHPExcel读取excel插入数据库
版本 ThinkPHP3.2.3 下载PHPExcel 将这两个文件放到并更改名字 excel文件: 数据库表: CREATE TABLE `sh_name` ( `name` varchar(255 ...
- 20169211《Linux内核原理与分析》第二周作业
<linux内核分析>实验一实验报告 <linux内核设计与实现>第1.2.18章学习总结 一.<linux内核分析>实验一实验报告 在进行实验楼操作 ...