/*
poj 3130 How I Mathematician Wonder What You Are! - 求多边形有没有核 */
#include <stdio.h>
#include<math.h>
const double eps=1e-8;
const int N=103;
struct point
{
double x,y;
}dian[N];
inline bool mo_ee(double x,double y)
{
double ret=x-y;
if(ret<0) ret=-ret;
if(ret<eps) return 1;
return 0;
}
inline bool mo_gg(double x,double y) { return x > y + eps;} // x > y
inline bool mo_ll(double x,double y) { return x < y - eps;} // x < y
inline bool mo_ge(double x,double y) { return x > y - eps;} // x >= y
inline bool mo_le(double x,double y) { return x < y + eps;} // x <= y
inline double mo_xmult(point p2,point p0,point p1)//p1在p2左返回负,在右边返回正
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
} point mo_intersection(point u1,point u2,point v1,point v2)
{
point ret=u1;
double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
ret.x+=(u2.x-u1.x)*t;
ret.y+=(u2.y-u1.y)*t;
return ret;
}
///////////////////////// //切割法求半平面交
point mo_banjiao_jiao[N*2];
point mo_banjiao_jiao_temp[N*2];
void mo_banjiao_cut(point *ans,point qian,point hou,int &nofdian)
{
int i,k;
for(i=k=0;i<nofdian;++i)
{
double a,b;
a=mo_xmult(hou,ans[i],qian);
b=mo_xmult(hou,ans[(i+1)%nofdian],qian);
if(mo_ge(a,0))//顺时针就是<=0
{
mo_banjiao_jiao_temp[k++]=ans[i];
}if(mo_ll(a*b,0))
{
mo_banjiao_jiao_temp[k++]=mo_intersection(qian,hou,ans[i],ans[(i+1)%nofdian]);
}
}
for(i=0;i<k;++i)
{
ans[i]=mo_banjiao_jiao_temp[i];
}
nofdian=k;
}
int mo_banjiao(point *dian,int n)
{
int i,nofdian;
nofdian=n;
for(i=0;i<n;++i)
{
mo_banjiao_jiao[i]=dian[i];
}
for(i=0;i<n;++i)//i从0开始
{
mo_banjiao_cut(mo_banjiao_jiao,dian[i],dian[(i+1)%n],nofdian);
if(nofdian==0)
{
return nofdian;
}
}
return nofdian;
}
/////////////////////////
int main()
{
int t,i,n;
while(scanf("%d",&n),n)
{ for(i=0;i<n;++i)
{
scanf("%lf%lf",&dian[i].x,&dian[i].y);
}
int ret=mo_banjiao(dian,n);
if(ret==0)
{
printf("0\n");
}else
{
printf("1\n");
}
}
return 0;
}
/*
为什么ret<3?
*/
#include<stdio.h>
#include<math.h>
#include <algorithm>
using namespace std; const double eps=1e-8;
struct point
{
double x,y;
}dian[20000+10];
point jiao[203];
struct line
{
point s,e;
double angle;
}xian[20000+10];
int n,yong;
bool mo_ee(double x,double y)
{
double ret=x-y;
if(ret<0) ret=-ret;
if(ret<eps) return 1;
return 0;
}
bool mo_gg(double x,double y) { return x > y + eps;} // x > y
bool mo_ll(double x,double y) { return x < y - eps;} // x < y
bool mo_ge(double x,double y) { return x > y - eps;} // x >= y
bool mo_le(double x,double y) { return x < y + eps;} // x <= y
point mo_intersection(point u1,point u2,point v1,point v2)
{
point ret=u1;
double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
ret.x+=(u2.x-u1.x)*t;
ret.y+=(u2.y-u1.y)*t;
return ret;
}
double mo_xmult(point p2,point p0,point p1)//p1在p2左返回负,在右边返回正
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
} void mo_HPI_addl(point a,point b)
{
xian[yong].s=a;
xian[yong].e=b;
xian[yong].angle=atan2(b.y-a.y,b.x-a.x);
yong++;
}
//半平面交
bool mo_HPI_cmp(const line& a,const line& b)
{
if(mo_ee(a.angle,b.angle))
{
return mo_gg( mo_xmult(b.e,a.s,b.s),0);
}else
{
return mo_ll(a.angle,b.angle);
}
}
int mo_HPI_dq[20000+10];
bool mo_HPI_isout(line cur,line top,line top_1)
{
point jiao=mo_intersection(top.s,top.e,top_1.s,top_1.e);
return mo_ll( mo_xmult(cur.e,jiao,cur.s),0);//若顺时针时应为mo_gg
}
int mo_HalfPlaneIntersect(line *xian,int n,point *jiao)
{
int i,j,ret=0;
sort(xian,xian+n,mo_HPI_cmp);
for (i = 0, j = 0; i < n; i++)
{
if (mo_gg(xian[i].angle,xian[j].angle))
{
xian[++j] = xian[i];
}
}
n=j+1;
mo_HPI_dq[0]=0;
mo_HPI_dq[1]=1;
int top=1,bot=0;
for (i = 2; i < n; i++)
{
while (top > bot && mo_HPI_isout(xian[i], xian[mo_HPI_dq[top]], xian[mo_HPI_dq[top-1]])) top--;
while (top > bot && mo_HPI_isout(xian[i], xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[bot+1]])) bot++;
mo_HPI_dq[++top] = i; //当前半平面入栈
}
while (top > bot && mo_HPI_isout(xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[top]], xian[mo_HPI_dq[top-1]])) top--;
while (top > bot && mo_HPI_isout(xian[mo_HPI_dq[top]], xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[bot+1]])) bot++;
mo_HPI_dq[++top] = mo_HPI_dq[bot];
for (ret = 0, i = bot; i < top; i++, ret++)
{
jiao[ret]=mo_intersection(xian[mo_HPI_dq[i+1]].s,xian[mo_HPI_dq[i+1]].e,xian[mo_HPI_dq[i]].s,xian[mo_HPI_dq[i]].e);
}
return ret;
}
int main()
{
int i;
while(scanf("%d",&n),n)
{
yong=0;
for(i=0;i<n;++i)
{
scanf("%lf%lf",&dian[i].x,&dian[i].y);
}
for(i=0;i<n;++i)
{
mo_HPI_addl(dian[i],dian[(i+1)%n]);
}
int ret=mo_HalfPlaneIntersect(xian,n,jiao);
if(ret<3)
{
printf("0\n");
}else
{
printf("1\n");
}
}
return 0;
}

poj 3130 How I Mathematician Wonder What You Are! - 求多边形有没有核 - 模版的更多相关文章

  1. POJ 3130 How I Mathematician Wonder What You Are! (半平面交)

    题目链接:POJ 3130 Problem Description After counting so many stars in the sky in his childhood, Isaac, n ...

  2. POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交

    题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...

  3. poj 1474 Video Surveillance - 求多边形有没有核

    /* poj 1474 Video Surveillance - 求多边形有没有核 */ #include <stdio.h> #include<math.h> const d ...

  4. poj 3130 How I Mathematician Wonder What You Are!

    http://poj.org/problem?id=3130 #include <cstdio> #include <cstring> #include <algorit ...

  5. POJ 3130 How I Mathematician Wonder What You Are! (半平面相交)

    Description After counting so many stars in the sky in his childhood, Isaac, now an astronomer and a ...

  6. POJ 3130 How I Mathematician Wonder What You Are!(半平面交求多边形的核)

    题目链接 题意 : 给你一个多边形,问你该多边形中是否存在一个点使得该点与该多边形任意一点的连线都在多边形之内. 思路 : 与3335一样,不过要注意方向变化一下. #include <stdi ...

  7. poj 3130 How I Mathematician Wonder What You Are! 【半平面交】

    求多边形的核,直接把所有边求半平面交判断有无即可 #include<iostream> #include<cstdio> #include<algorithm> # ...

  8. POJ 1279 Art Gallery【半平面交】(求多边形的核)(模板题)

    <题目链接> 题目大意: 按顺时针顺序给出一个N边形,求N边形的核的面积. (多边形的核:它是平面简单多边形的核是该多边形内部的一个点集该点集中任意一点与多边形边界上一点的连线都处于这个多 ...

  9. 三道半平面交测模板题 Poj1474 Poj 3335 Poj 3130

    求半平面交的算法是zzy大神的排序增量法. ///Poj 1474 #include <cmath> #include <algorithm> #include <cst ...

随机推荐

  1. git - git命令中文显示乱码

    使用git add添加要提交的文件的时候,如果文件名是中文,会显示形如897\232\350\256...的乱码,解决办法:   git config --global core.quotepath ...

  2. scrollview 滚动布局

    <ScrollView xmlns:android="http://schemas.android.com/apk/res/android"    android:layou ...

  3. day1作业二:多级菜单

        作业二:多级菜单 1.三级菜单 2.可以次选择进入各子菜单 3.所需新知识点:列表.字典 4.打印b回到上一层 5.打印q退出循环 流程图如下: readme: (1)存储三级菜单的字典;设置 ...

  4. 十五oracle 触发器

    一.触发器简介 触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行.因此触发器不需要人为的去调用,也不能调用.然后,触发器的触发条件其实在你定义的时候就已经设定好了.这里面需 ...

  5. [Codeforces166B]Polygons 凸包

    大致题意: 给你一个凸多边形A,和一个任意多边形B,判断B是否在A的内部 先对A的点集建凸包,然后枚举B中的点,二分判断是否在A的内部. 二分时可用叉积判断,详细见代码 #include<cst ...

  6. BNUOJ 52509 Borrow Classroom

    最近公共祖先. 如果$A$到$1$的时间小于$B$到$C$再到$1$的时间,那么一定可以拦截. 如果上述时间相等,需要在到达$1$之前,两者相遇才可以拦截. #include<bits/stdc ...

  7. Vijos1448 校门外的树 [树状数组]

    题目传送门 校门外的树 描述 校门外有很多树,有苹果树,香蕉树,有会扔石头的,有可以吃掉补充体力的……如今学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的树,现有两个操作:K= ...

  8. PHP库函数积累,持续更新

    1. gethostbyname($server_name) 作用:根据给定的域名获取对应的ip 示例:echo gethostbyname("www.baidu.com"); 2 ...

  9. 深入理解javascript作用域系列第二篇

    前面的话 大多数时候,我们对作用域产生混乱的主要原因是分不清楚应该按照函数位置的嵌套顺序,还是按照函数的调用顺序进行变量查找.再加上this机制的干扰,使得变量查找极易出错.这实际上是由两种作用域工作 ...

  10. ubuntu16.04系统上安装CAJViewer方法步骤教程详解

    下载链接: http://pan.baidu.com/s/1jIqHxLs 或: http://download.csdn.net/detail/arhaiyun/5457947 安装wine1.6: ...