日志分析


scala> import org.apache.spark.sql.types._
scala> import org.apache.spark.sql.Row scala> val logRDD = sc.textFile("hdfs://master:9000/student/2016113012/data/log.txt").map(_.split("#"))
logRDD: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[2] at map at <console>:21 val schema = StructType(
Array(
StructField("ipAddress",StringType,true),
StructField("clientIndentd",StringType,true),
StructField("userId",StringType,true),
StructField("dateTime",StringType,true),
StructField("protocal",StringType,true),
StructField("responseCode",StringType,true),
StructField("contentSize",IntegerType,true) ) ) val rowRDD = logRDD.map(p => Row(p(0),p(1),p(2),p(3),p(4),p(5),p(6).toInt))
val logDF = sqlContext.createDataFrame(rowRDD,schema)
logDF.registerTempTable("logs") //统计访问文件大小的平均值,最大值,最小值
scala> sqlContext.sql("select avg(contentSize),min(contentSize),max(contentSize) from logs").show()
17/03/07 17:04:20 INFO ParseDriver: Parsing command: select avg(contentSize),min(contentSize),max(contentSize) from logs
17/03/07 17:04:20 INFO ParseDriver: Parse Completed
17/03/07 17:04:21 INFO FileInputFormat: Total input paths to process : 1
17/03/07 17:04:22 INFO deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
17/03/07 17:04:22 INFO deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
17/03/07 17:04:22 INFO deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
17/03/07 17:04:22 INFO deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
17/03/07 17:04:22 INFO deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
+------+----+----+
| _c0| _c1| _c2|
+------+----+----+
|3506.0|2000|5554|
+------+----+----+ //统计响应代码的数量
scala> sqlContext.sql("select responseCode,count(*) from logs group by responseCode").show()
17/03/07 17:52:26 INFO ParseDriver: Parsing command: select responseCode,count(*) from logs group by responseCode
17/03/07 17:52:26 INFO ParseDriver: Parse Completed
+------------+---+
|responseCode|_c1|
+------------+---+
| 304| 1|
| 200| 2|
+------------+---+ //统计大于1次的ip地址
scala> sqlContext.sql("select ipAddress,count(1) as total from logs group by ipAddress having total > 1").show()
17/03/07 17:55:20 INFO ParseDriver: Parsing command: select ipAddress,count(1) as total from logs group by ipAddress having total > 1
17/03/07 17:55:20 INFO ParseDriver: Parse Completed
+----------+-----+
| ipAddress|total|
+----------+-----+
|10.0.0.153| 3|
+----------+-----+

问题:如何将p(4)里面的继续切分

spark SQL学习(综合案例-日志分析)的更多相关文章

  1. spark SQL学习(案例-统计每日销售)

    需求:统计每日销售额 package wujiadong_sparkSQL import org.apache.spark.sql.types._ import org.apache.spark.sq ...

  2. spark SQL学习(案例-统计每日uv)

    需求:统计每日uv package wujiadong_sparkSQL import org.apache.spark.sql.{Row, SQLContext} import org.apache ...

  3. spark SQL学习(数据源之parquet)

    Parquet是面向分析型业务得列式存储格式 编程方式加载数据 代码示例 package wujiadong_sparkSQL import org.apache.spark.sql.SQLConte ...

  4. Mybatis高级:Mybatis注解开发单表操作,Mybatis注解开发多表操作,构建sql语句,综合案例学生管理系统使用接口注解方式优化

    知识点梳理 课堂讲义 一.Mybatis注解开发单表操作 *** 1.1 MyBatis的常用注解 之前我们在Mapper映射文件中编写的sql语句已经各种配置,其实是比较麻烦的 而这几年来注解开发越 ...

  5. Spark SQL入门用法与原理分析

    Spark SQL是为了让开发人员摆脱自己编写RDD等原生Spark代码而产生的,开发人员只需要写一句SQL语句或者调用API,就能生成(翻译成)对应的SparkJob代码并去执行,开发变得更简洁 注 ...

  6. spark SQL学习(认识spark SQL)

    spark SQL初步认识 spark SQL是spark的一个模块,主要用于进行结构化数据的处理.它提供的最核心的编程抽象就是DataFrame. DataFrame:它可以根据很多源进行构建,包括 ...

  7. spark SQL学习(spark连接 mysql)

    spark连接mysql(打jar包方式) package wujiadong_sparkSQL import java.util.Properties import org.apache.spark ...

  8. spark SQL学习(spark连接hive)

    spark 读取hive中的数据 scala> import org.apache.spark.sql.hive.HiveContext import org.apache.spark.sql. ...

  9. spark SQL学习(数据源之json)

    准备工作 数据文件students.json {"id":1, "name":"leo", "age":18} {&qu ...

随机推荐

  1. C#日期处理(转) 太忘记了,备忘

    //今天 DateTime.Now.Date.ToShortDateString(); //昨天,就是今天的日期减一 DateTime.Now.AddDays(-1).ToShortDateStrin ...

  2. linux服务器自动切割日志

    需求 由于nginx的日志会不停地增大,所以需要我们自己去切割日志,方便管理,需要达到以下的效果: 按日期自动切割日志,最小单位是天. 当日志总量超过一定量时,自动直接清理日志,限定总量不能超过100 ...

  3. git学习——<四>git版本管理

    一.git版本管理的优势 都说git比svn强大,强大在哪呢? 首先,从部署上说:svn.cvs都是集中式的,一台服务器上部署服务,所有客户端编写的代码都要提交到该服务器上.git是分布式的,所有人都 ...

  4. 【opencv】ubuntu opencv imshow()报错

    错误提示: ubuntu opencv imshow() 报错 windows.cpp报错 the function is not implemented If you are on Ubuntu o ...

  5. SSL延迟有多大?(转)

    add by zhj: SSL层在TCP层之上,SSL握手是在TCP握手完成之后,除了这点之外,两者应该是相对独立的过程.在服务端,这两个过程有可能不在同一台主机上, 比如服务端用LVS+Nginx实 ...

  6. git学习------>git-rev-parse命令初识

    一.准备工作 第一步:在d盘git test目录下,新建工作区根目录demo,进入该目录后,执行git init创建版本库. DH207891+OuyangPeng@DH207891 MINGW32 ...

  7. 【云安全与同态加密_调研分析(5)】云安全标准现状与统计——By Me

  8. redis实现自动输入完成(八)

    1. 介绍 当我们在京东商城的搜索框,输入想要搜索的内容,比如你想要搜索"热水瓶",刚输入一个"热"字,就会出现一个下拉框,列出了很多以"热" ...

  9. send/receive h264/aac file/data by rtp/rtsp over udp/tcp

    一.安装一些必要的调试工具 1.vlc安装sudo apt-get install vlcsudo apt-get install vlc-nox 2.ffmpeg安装,带ffplay,ffplay依 ...

  10. linux怎样使用top命令查看系统状态

    有时候有很多问题只有在线上或者预发环境才能发现,而线上又不能Debug,所以线上问题定位就只能看日志,系统状态和Dump线程. Linux系统可以通过top命令查看系统的CPU.内存.运行时间.交换分 ...