社交网络中我们给每个人定义了一个“活跃度”,现希望根据这个指标把人群分为两大类,即外向型(outgoing,即活跃度高的)和内向型(introverted,即活跃度低的)。要求两类人群的规模尽可能接近,而他们的总活跃度差距尽可能拉开。

输入格式:

输入第一行给出一个正整数N(2 <= N <= 105)。随后一行给出N个正整数,分别是每个人的活跃度,其间以空格分隔。题目保证这些数字以及它们的和都不会超过231

输出格式:

按下列格式输出:

Outgoing #: N1
Introverted #: N2
Diff = N3

其中 N1 是外向型人的个数;N2 是内向型人的个数;N3 是两群人总活跃度之差的绝对值。

输入样例1:

10
23 8 10 99 46 2333 46 1 666 555

输出样例1:

Outgoing #: 5
Introverted #: 5
Diff = 3611

输入样例2:

13
110 79 218 69 3721 100 29 135 2 6 13 5188 85

输出样例2:

Outgoing #: 7
Introverted #: 6
Diff = 9359 排个序,从中间分开,如果总数为奇数,那么就活跃度大的多一个。 代码:
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
int n,a[],sum[];
int main()
{
cin>>n;
for(int i = ;i < n;i ++)
cin>>a[i];
sort(a,a+n);
sum[] = a[];
for(int i = ;i < n;i ++)
sum[i] = sum[i - ] + a[i];
printf("Outgoing #: %d\nIntroverted #: %d\nDiff = %d",(n+)/,n/,sum[n - ] - sum[n/ - ] * );
}

L2-017. 人以群分的更多相关文章

  1. 周末惊魂:因struts2 016 017 019漏洞被入侵,修复。

    入侵(暴风雨前的宁静) 下午阳光甚好,想趁着安静的周末静下心来写写代码.刚过一个小时,3点左右,客服MM找我,告知客户都在说平台登录不了(我们有专门的客户qq群).看了下数据库连接数,正常.登录阿里云 ...

  2. 配置 L2 Population - 每天5分钟玩转 OpenStack(114)

    前面我们学习了L2 Population 的原理,今天讨论如何在 Neutron 中配置和启用此特性. 目前 L2 Population 支持 VXLAN with Linux bridge 和 VX ...

  3. L2 Population 原理 - 每天5分钟玩转 OpenStack(113)

    前面我们学习了 VXLAN,今天讨论跟 VXLAN 紧密相关的 L2 Population. L2 Population 是用来提高 VXLAN 网络 Scalability 的. 通常我们说某个系统 ...

  4. Neutron 理解 (4): Neutron OVS OpenFlow 流表 和 L2 Population [Netruon OVS OpenFlow tables + L2 Population]

    学习 Neutron 系列文章: (1)Neutron 所实现的虚拟化网络 (2)Neutron OpenvSwitch + VLAN 虚拟网络 (3)Neutron OpenvSwitch + GR ...

  5. paper 126:[转载] 机器学习中的范数规则化之(一)L0、L1与L2范数

    机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...

  6. 《zw版·Halcon-delphi系列原创教程》 Halcon分类函数017·point点函数

    <zw版·Halcon-delphi系列原创教程> Halcon分类函数017·point点函数 为方便阅读,在不影响说明的前提下,笔者对函数进行了简化: :: 用符号“**”,替换:“p ...

  7. 正则化方法:L1和L2 regularization、数据集扩增、dropout

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  8. 机器学习中的范数规则化之(一)L0、L1与L2范数

    L1正则会产生稀疏解,让很多无用的特征的系数变为0,只留下一些有用的特征 L2正则不让某些特征的系数变为0,即不产生稀疏解,只让他们接近于0.即L2正则倾向于让权重w变小.见第二篇的推导. 所以,样本 ...

  9. Openstack Neutron L2 Population

    Why do we need it, whatever it is? VM unicast, multicast and broadcast traffic flow is detailed in m ...

  10. 机器学习中的范数规则化之(一)L0、L1与L2范数(转)

    http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http: ...

随机推荐

  1. ThinkPHP开发笔记-控制器

    1.下面就是一个典型的控制器类的定义: <?php namespace Home\Controller; use Think\Controller; class IndexController ...

  2. MooseFS技术详解

    原文 http://www.tuicool.com/articles/vQvEZ3y MooseFS是一款具有冗余容错功能的分布式文件系统.它把数据分散在多台服务器上,确保一份数据多个备份副本,对外提 ...

  3. Nginx安装和使用

    Nginx简介 nginx不单可以作为强大的web服务器,也可以作为一个反向代理服务器,而且nginx还可以按照调度规则实现动态.静态页面的分离,可以按照轮询.ip哈希.URL哈希.权重等多种方式对后 ...

  4. java MongoDB查询(二)复杂查询

    前言 在上篇<java MongoDB查询(一)简单查询>中我们简单了解了下查询,但是仅仅有那些查询是不够用的,还需要复杂的查询,这篇就这点进行叙述. 1.数据结构 集合:firstCol ...

  5. centos6/7安装 tinyproxy (yum安装)

    centos6/7安装tinyproxy(yum安装)2016年06月06日 运维 暂无评论 阅读 790 次centos7安装tinyproxy,centos6安装tinyproxy,centos6 ...

  6. IOS-涂鸦

    // // PaintView.m // IOS_0224_涂鸦 // // Created by ma c on 16/2/24. // Copyright © 2016年 博文科技. All ri ...

  7. day31 堡垒机尾声 + Python与金融量化分析(一)

    堡垒机尾声: 代码案例:https://github.com/liyongsan/git_class/tree/master/day31 课堂笔记:file send: 1.选择本地文件 2.远程路径 ...

  8. socketserver源码简介

    一.socketserver流程简介 +------------+ | BaseServer | +------------+ | v +-----------+ +----------------- ...

  9. 018——VUE中v-for操作对象与数值

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. ( 转)Sqlserver中tinyint, smallint, int, bigint的区别 及 10进制转换16进制的方法

    一.类型比较 bigint:从-2^63(-9223372036854775808)到2^63-1(9223372036854775807)的整型数据,存储大小为 8 个字节.一个字节就是8位,那么b ...