RUAL1519 Formula 1


Background

Regardless of the fact, that Vologda could not get rights to hold the Winter Olympic games of 20**, it is well-known, that the city will conduct one of the Formula 1 events. Surely, for such an important thing a new race circuit should be built as well as hotels, restaurants, international airport - everything for Formula 1 fans, who will flood the city soon. But when all the hotels and a half of the restaurants were built, it appeared, that at the site for the future circuit a lot of gophers lived in their holes. Since we like animals very much, ecologists will never allow to build the race circuit over the holes. So now the mayor is sitting sadly in his office and looking at the map of the circuit with all the holes plotted on it.

Problem

Who will be smart enough to draw a plan of the circuit and keep the city from inevitable disgrace? Of course, only true professionals - battle-hardened programmers from the first team of local technical university!.. But our heroes were not looking for easy life and set much more difficult problem: “Certainly, our mayor will be glad, if we find how many ways of building the circuit are there!” - they said.

It should be said, that the circuit in Vologda is going to be rather simple. It will be a rectangle N*M cells in size with a single circuit segment built through each cell. Each segment should be parallel to one of rectangle’s sides, so only right-angled bends may be on the circuit. At the picture below two samples are given for N = M = 4 (gray squares mean gopher holes, and the bold black line means the race circuit). There are no other ways to build the circuit here.

Input

The first line contains the integer numbers N and M (2 ≤ N, M ≤ 12). Each of the next N lines contains M characters, which are the corresponding cells of the rectangle. Character “.” (full stop) means a cell, where a segment of the race circuit should be built, and character “*” (asterisk) - a cell, where a gopher hole is located. There are at least 4 cells without gopher holes.

Output

You should output the desired number of ways. It is guaranteed, that it does not exceed 263-1.

Samples

Input

4 4

**..

….

….

….

Output

2

Inpuut

4 4

….

….

….

….

Output

6


大概是插头DP的板子题

用Hash表储存状态

然后分别讨论当前的插头所对应的轮廓线上插头的情况

具体的在插头DP的总结里边写一些吧

然后根据已有的插头状态考虑当前位置的情况,大致分为连接,延长,新建三种

然后发现状态比较多,用四进制来进行储存,反正位运算快嘛


#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define MAX 300010
#define N 20
int n,m,ind,endx,endy;
int mp[N][N],tot[2],bit[N];
LL dp[2][MAX],state[2][MAX],sum;
int head[MAX],Next[MAX],Hash[MAX],siz;
/*
tot 状态数
state 每个状态是什么
Hash hash表
*/
void init(){
memset(mp,0,sizeof(mp));
sum=ind=0;
tot[ind]=1;
dp[ind][1]=1;
state[ind][1]=0;
}
void Insert(LL s,LL num){
int pos=s%MAX;
for(int i=head[pos];~i;i=Next[i])
if(state[ind][Hash[i]]==s){dp[ind][Hash[i]]+=num;return;}
++tot[ind];
state[ind][tot[ind]]=s;
dp[ind][tot[ind]]=num;
Hash[siz]=tot[ind];
Next[siz]=head[pos];
head[pos]=siz++;
}
void DP(){
for(int i=1;i<=n;i++){
for(int k=1;k<=tot[ind];k++)state[ind][k]<<=2;
for(int j=1;j<=m;j++){
memset(head,-1,sizeof(head));siz=0;
ind^=1;tot[ind]=0;
for(int k=1;k<=tot[ind^1];k++){
LL s=state[ind^1][k];
LL num=dp[ind^1][k];
int p=(s>>bit[j-1])%4;//左
int q=(s>>bit[j])%4;//上
if(!mp[i][j]){if(p+q==0)Insert(s,num);}
else if(p+q==0){//上左都没有插头
if((!mp[i+1][j])||(!mp[i][j+1]))continue;
s=s+(1<<bit[j-1])+2*(1<<bit[j]);
Insert(s,num);
}else if(p==0&&q){
if(mp[i][j+1])Insert(s,num);
if(mp[i+1][j]){
s=s+q*(1<<bit[j-1])-q*(1<<bit[j]);
Insert(s,num);
}
}else if(p&&q==0){
if(mp[i+1][j])Insert(s,num);
if(mp[i][j+1]){
s=s-p*(1<<bit[j-1])+p*(1<<bit[j]);
Insert(s,num);
}
}else if(p+q==2){
int b=1;
for(int t=j+1;t<=m;t++){
int v=(s>>bit[t])%4;
if(v==1)++b;
if(v==2)--b;
if(!b){s-=(1<<bit[t]);break;}
}
s=s-(1<<bit[j-1])-(1<<bit[j]);
Insert(s,num);
}else if(p+q==4){
int b=1;
for(int t=j-2;t>=0;--t){
int v=(s>>bit[t])%4;
if(v==2)++b;
if(v==1)--b;
if(!b){s+=(1<<bit[t]);break;}
}
s=s-2*(1<<bit[j-1])-2*(1<<bit[j]);
Insert(s,num);
}else if(p==1&&q==2){
if(i==endx&&j==endy)sum+=num;
}else if(p==2&&q==1){
s=s-2*(1<<bit[j-1])-(1<<bit[j]);
Insert(s,num);
}
}
}
}
}
int main(){
for(int i=0;i<N;i++)bit[i]=i<<1;
while(scanf("%d%d",&n,&m)!=EOF){
init();
for(int i=1;i<=n;i++){
getchar();char ch;
for(int j=1;j<=m;j++){
scanf("%c",&ch);
mp[i][j]=(ch=='.');
if(ch=='.')endx=i,endy=j;
}
}
DP();
printf("%lld\n",sum);
}
return 0;
}

RUAL1519 Formula 1 【插头DP】的更多相关文章

  1. 【BZOJ1814】Ural 1519 Formula 1 插头DP

    [BZOJ1814]Ural 1519 Formula 1 题意:一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数.(n,m<=12) 题解:插头DP板子题,刷板 ...

  2. 【Ural】1519. Formula 1 插头DP

    [题目]1519. Formula 1 [题意]给定n*m个方格图,有一些障碍格,求非障碍格的哈密顿回路数量.n,m<=12. [算法]插头DP [题解]<基于连通性状态压缩的动态规划问题 ...

  3. bzoj1814 Ural 1519 Formula 1(插头dp模板题)

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 924  Solved: 351[Submit][Sta ...

  4. URAL1519 Formula 1 —— 插头DP

    题目链接:https://vjudge.net/problem/URAL-1519 1519. Formula 1 Time limit: 1.0 secondMemory limit: 64 MB ...

  5. bzoj 1814 Ural 1519 Formula 1 ——插头DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1814 普通的插头 DP .但是调了很久.注意如果合并两个 1 的话,不是 “把向右第一个 2 ...

  6. Ural 1519 Formula 1 插头DP

    这是一道经典的插头DP单回路模板题. 用最小表示法来记录连通性,由于二进制的速度,考虑使用8进制. 1.当同时存在左.上插头的时候,需要判断两插头所在连通块是否相同,若相同,只能在最后一个非障碍点相连 ...

  7. [URAL1519] Formula 1 [插头dp入门]

    题面: 传送门 思路: 插头dp基础教程 先理解一下题意:实际上就是要你求这个棋盘中的哈密顿回路个数,障碍不能走 看到这个数据范围,还有回路处理,就想到使用插头dp来做了 观察一下发现,这道题因为都是 ...

  8. URAL Formula 1 ——插头DP

    [题目分析] 一直听说这是插头DP入门题目. 难到爆炸. 写了2h,各种大常数,ural垫底. [代码] #include <cstdio> #include <cstring> ...

  9. bzoj 1814 Ural 1519 Formula 1 插头DP

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 942  Solved: 356[Submit][Sta ...

  10. BZOJ1814: Ural 1519 Formula 1(插头Dp)

    Description Regardless of the fact, that Vologda could not get rights to hold the Winter Olympic gam ...

随机推荐

  1. meta标签中的http-equiv属性使用介绍

      meta是html语言head区的一个辅助性标签.也许你认为这些代码可有可无.其实如果你能够用好meta标签,会给你带来意想不到的效果,meta 标签的作用有:搜索引擎优化(SEO),定义页面使用 ...

  2. django 使用form组件提交数据之form表单提交

    django的form组件可以减少后台在进行一些重复性的验证工作,极大降低开发效率. 最近遇到一个问题: 当使用form表单提交数据后,如果数据格式不符合后台定义的规则,需要重新在前端页面填写数据. ...

  3. kotlin for android----------MVP模式实现登录

    学习了Kotlin,随便来个小案例,以MVP+Kotlin 来实现登录的一个小案例,希望对大家有所帮助,效果图: MVP: Model Model 是用户界面需要显示数据的抽象,也可以理解为从业务数据 ...

  4. 1-19-1 RHEL6启动原理和故障排除

    大纲: 一.RHEL6系统启动原理 BIOS--->mbr--->bootloader--->内核--->init--->/etc/rc.d/rc.sysinit---& ...

  5. 1-12 RHEL7-find命令的使用

    1.文件查找findfind命令是在目录结构中,搜索文件,并执行特定的操作find命令提供了相当多的查找条件,功能很强大 2.格式usage:find pathname -options[-print ...

  6. Java SHA256/Base64转.NET(C#)实现---(华为云云市场.NET版本加密方式)

    前言: 工作需要,对接华为云应用市场的 API 接口,由于维护团队都是 .NET 所以用 .NET 来开发. 简单了解一下 SHA256 加密算法,本质就是一个 Hash,与 MD5 相比就是计算量大 ...

  7. Log4j详细设置说明

    1. 动态的改变记录级别和策略,即修改log4j.properties,不需要重启Web应用,这需要在web.xml中设置一下.2. 把log文件定在 /WEB-INF/logs/ 而不需要写绝对路径 ...

  8. 双系统下ubuntu不能访问658GB卷,磁盘挂载失败。

    win10+ubuntu双系统出现以下错误: Error mounting /dev/sda5 at /media/captain/AC8CF85B8CF8218E: Command-line `mo ...

  9. jq中的$.post中方法

    jQuery.post( url, [data], [callback], [type] ) : 使用POST方式来进行异步请求 参数: url (String) : 发送请求的URL地址. data ...

  10. LeetCode OJ:Range Sum Query 2D - Immutable(区域和2D版本)

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...