RUAL1519 Formula 1 【插头DP】
RUAL1519 Formula 1
Background
Regardless of the fact, that Vologda could not get rights to hold the Winter Olympic games of 20**, it is well-known, that the city will conduct one of the Formula 1 events. Surely, for such an important thing a new race circuit should be built as well as hotels, restaurants, international airport - everything for Formula 1 fans, who will flood the city soon. But when all the hotels and a half of the restaurants were built, it appeared, that at the site for the future circuit a lot of gophers lived in their holes. Since we like animals very much, ecologists will never allow to build the race circuit over the holes. So now the mayor is sitting sadly in his office and looking at the map of the circuit with all the holes plotted on it.
Problem
Who will be smart enough to draw a plan of the circuit and keep the city from inevitable disgrace? Of course, only true professionals - battle-hardened programmers from the first team of local technical university!.. But our heroes were not looking for easy life and set much more difficult problem: “Certainly, our mayor will be glad, if we find how many ways of building the circuit are there!” - they said.
It should be said, that the circuit in Vologda is going to be rather simple. It will be a rectangle N*M cells in size with a single circuit segment built through each cell. Each segment should be parallel to one of rectangle’s sides, so only right-angled bends may be on the circuit. At the picture below two samples are given for N = M = 4 (gray squares mean gopher holes, and the bold black line means the race circuit). There are no other ways to build the circuit here.
Input
The first line contains the integer numbers N and M (2 ≤ N, M ≤ 12). Each of the next N lines contains M characters, which are the corresponding cells of the rectangle. Character “.” (full stop) means a cell, where a segment of the race circuit should be built, and character “*” (asterisk) - a cell, where a gopher hole is located. There are at least 4 cells without gopher holes.
Output
You should output the desired number of ways. It is guaranteed, that it does not exceed 263-1.
Samples
Input
4 4
**..
….
….
….
Output
2
Inpuut
4 4
….
….
….
….
Output
6
大概是插头DP的板子题
用Hash表储存状态
然后分别讨论当前的插头所对应的轮廓线上插头的情况
具体的在插头DP的总结里边写一些吧
然后根据已有的插头状态考虑当前位置的情况,大致分为连接,延长,新建三种
然后发现状态比较多,用四进制来进行储存,反正位运算快嘛
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define MAX 300010
#define N 20
int n,m,ind,endx,endy;
int mp[N][N],tot[2],bit[N];
LL dp[2][MAX],state[2][MAX],sum;
int head[MAX],Next[MAX],Hash[MAX],siz;
/*
tot 状态数
state 每个状态是什么
Hash hash表
*/
void init(){
memset(mp,0,sizeof(mp));
sum=ind=0;
tot[ind]=1;
dp[ind][1]=1;
state[ind][1]=0;
}
void Insert(LL s,LL num){
int pos=s%MAX;
for(int i=head[pos];~i;i=Next[i])
if(state[ind][Hash[i]]==s){dp[ind][Hash[i]]+=num;return;}
++tot[ind];
state[ind][tot[ind]]=s;
dp[ind][tot[ind]]=num;
Hash[siz]=tot[ind];
Next[siz]=head[pos];
head[pos]=siz++;
}
void DP(){
for(int i=1;i<=n;i++){
for(int k=1;k<=tot[ind];k++)state[ind][k]<<=2;
for(int j=1;j<=m;j++){
memset(head,-1,sizeof(head));siz=0;
ind^=1;tot[ind]=0;
for(int k=1;k<=tot[ind^1];k++){
LL s=state[ind^1][k];
LL num=dp[ind^1][k];
int p=(s>>bit[j-1])%4;//左
int q=(s>>bit[j])%4;//上
if(!mp[i][j]){if(p+q==0)Insert(s,num);}
else if(p+q==0){//上左都没有插头
if((!mp[i+1][j])||(!mp[i][j+1]))continue;
s=s+(1<<bit[j-1])+2*(1<<bit[j]);
Insert(s,num);
}else if(p==0&&q){
if(mp[i][j+1])Insert(s,num);
if(mp[i+1][j]){
s=s+q*(1<<bit[j-1])-q*(1<<bit[j]);
Insert(s,num);
}
}else if(p&&q==0){
if(mp[i+1][j])Insert(s,num);
if(mp[i][j+1]){
s=s-p*(1<<bit[j-1])+p*(1<<bit[j]);
Insert(s,num);
}
}else if(p+q==2){
int b=1;
for(int t=j+1;t<=m;t++){
int v=(s>>bit[t])%4;
if(v==1)++b;
if(v==2)--b;
if(!b){s-=(1<<bit[t]);break;}
}
s=s-(1<<bit[j-1])-(1<<bit[j]);
Insert(s,num);
}else if(p+q==4){
int b=1;
for(int t=j-2;t>=0;--t){
int v=(s>>bit[t])%4;
if(v==2)++b;
if(v==1)--b;
if(!b){s+=(1<<bit[t]);break;}
}
s=s-2*(1<<bit[j-1])-2*(1<<bit[j]);
Insert(s,num);
}else if(p==1&&q==2){
if(i==endx&&j==endy)sum+=num;
}else if(p==2&&q==1){
s=s-2*(1<<bit[j-1])-(1<<bit[j]);
Insert(s,num);
}
}
}
}
}
int main(){
for(int i=0;i<N;i++)bit[i]=i<<1;
while(scanf("%d%d",&n,&m)!=EOF){
init();
for(int i=1;i<=n;i++){
getchar();char ch;
for(int j=1;j<=m;j++){
scanf("%c",&ch);
mp[i][j]=(ch=='.');
if(ch=='.')endx=i,endy=j;
}
}
DP();
printf("%lld\n",sum);
}
return 0;
}
RUAL1519 Formula 1 【插头DP】的更多相关文章
- 【BZOJ1814】Ural 1519 Formula 1 插头DP
[BZOJ1814]Ural 1519 Formula 1 题意:一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数.(n,m<=12) 题解:插头DP板子题,刷板 ...
- 【Ural】1519. Formula 1 插头DP
[题目]1519. Formula 1 [题意]给定n*m个方格图,有一些障碍格,求非障碍格的哈密顿回路数量.n,m<=12. [算法]插头DP [题解]<基于连通性状态压缩的动态规划问题 ...
- bzoj1814 Ural 1519 Formula 1(插头dp模板题)
1814: Ural 1519 Formula 1 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 924 Solved: 351[Submit][Sta ...
- URAL1519 Formula 1 —— 插头DP
题目链接:https://vjudge.net/problem/URAL-1519 1519. Formula 1 Time limit: 1.0 secondMemory limit: 64 MB ...
- bzoj 1814 Ural 1519 Formula 1 ——插头DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1814 普通的插头 DP .但是调了很久.注意如果合并两个 1 的话,不是 “把向右第一个 2 ...
- Ural 1519 Formula 1 插头DP
这是一道经典的插头DP单回路模板题. 用最小表示法来记录连通性,由于二进制的速度,考虑使用8进制. 1.当同时存在左.上插头的时候,需要判断两插头所在连通块是否相同,若相同,只能在最后一个非障碍点相连 ...
- [URAL1519] Formula 1 [插头dp入门]
题面: 传送门 思路: 插头dp基础教程 先理解一下题意:实际上就是要你求这个棋盘中的哈密顿回路个数,障碍不能走 看到这个数据范围,还有回路处理,就想到使用插头dp来做了 观察一下发现,这道题因为都是 ...
- URAL Formula 1 ——插头DP
[题目分析] 一直听说这是插头DP入门题目. 难到爆炸. 写了2h,各种大常数,ural垫底. [代码] #include <cstdio> #include <cstring> ...
- bzoj 1814 Ural 1519 Formula 1 插头DP
1814: Ural 1519 Formula 1 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 942 Solved: 356[Submit][Sta ...
- BZOJ1814: Ural 1519 Formula 1(插头Dp)
Description Regardless of the fact, that Vologda could not get rights to hold the Winter Olympic gam ...
随机推荐
- 使用HandleErrorAttribute处理异常
ASP.NET MVC 默认提供了一个异常过滤器HandleError特性,使用该特性可以极为方便的捕捉并处理控制器和操作抛出的异常,也可以将此特性注册为全局异常过滤器从而捕捉项目中的所有异常.如果想 ...
- ContOS网络连接及简单的ssh Xshell连接!
这边简单的记录一下下ContOS网络连接及简单的ssh Xshell连接! 首先你得安装一个Contos Linux系统对吧! 1.找到设置--->网络-->有线连接-->IPv4 ...
- spoj-ASSIGN-bitDP
ASSIGN - Assignments #dynamic-programming Problem Your task will be to calculate number of different ...
- UVA-11478 Halum (差分约束系统)
题目大意:一张n个节点的有向带边权图,每次操作能任选一个节点v个一个整数d,使以v为终点的边权值都减少d,以v为起点的边权值都增加d,求若干次操作后的最小边权值的非负最大值. 题目分析:用sum[i] ...
- Ubuntu 安装GNU Scientific library(GSL)
注: 此系列为自己之前所搭建网站内容. 由于论文数据处理的需要,需要使用libeemd这个包,需要安装gsl科学库,windows下没有办法,只能转战ubuntu进行科学计算. GSL(GNU Sci ...
- JS种正则表达式的基础用法
基础语法 元字符 常用元字符 含义 . 匹配除换行符以外的任意字符 \w 匹配字母数字或下划线 \W 匹配不是字母.数字.下划线的字符 \d 匹配数字,相当于[0-9] \D 匹配不是数字的字符 \s ...
- jps、jstack、jmap、jhat、jstat、hprof使用详解
https://my.oschina.net/feichexia/blog/196575#comment-list A. jps(Java Virtual Machine Process Status ...
- 【hive】子查询
hive中是不支持子查询的 但是并不意味这不支持in 或者 not in in 或者not in 后边是定值的话是支持的 但是接定制是可以的 例如 select id from table not i ...
- 启动和停止Oracle服务bat脚本
总所周知,Oracle随开机启动会占很大内存,而你每次想用的时候还得去计算机服务里去找服务.一个一个的启动,比较麻烦. 这里给出两个bat脚本,来直接双击启动和停止Oracle服务[脚本内容来源于网络 ...
- iOS支付宝SDK回调那坑
支付宝钱包支付接口开发包2.0标准版(iOS 2.2.1) ,回调不出来,demo给出的方法是: - (BOOL)application:(UIApplication *)application op ...