Divisibility
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 11622   Accepted: 4178

Description

Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions: 17 + 5 + -21 + 15 = 16 
17 + 5 + -21 - 15 = -14 
17 + 5 - -21 + 15 = 58 
17 + 5 - -21 - 15 = 28 
17 - 5 + -21 + 15 = 6 
17 - 5 + -21 - 15 = -24 
17 - 5 - -21 + 15 = 48 
17 - 5 - -21 - 15 = 18 
We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible by 5.

You are to write a program that will determine divisibility of sequence of integers.

Input

The first line of the input file contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space. 
The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value. 

Output

Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

Sample Input

4 7
17 5 -21 15

Sample Output

Divisible

思路:定义bool数组dp[10005][105],dp[i][j]表示前i+1个数所形成的和模上k是否为j.状态转移方程:if(dp[i-1][j]){ dp[i][mod(j+a[i],k)]=true;dp[i][mod(j-a[i],k)]=true;}
#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN=;
bool dp[MAXN][];
int a[MAXN];
int n,k;
int mod(int x,int m)
{
x%=m;
if(x<) x+=m;
return x;
}
int main()
{ while(scanf("%d%d",&n,&k)!=EOF)
{
memset(dp,false,sizeof(dp));
for(int i=;i<n;i++)
{
scanf("%d",&a[i]);
}
dp[][mod(a[],k)]=true;
for(int i=;i<n;i++)
{
for(int j=;j<k;j++)
{
if(dp[i-][j])
{
dp[i][mod(j+a[i],k)]=true;
dp[i][mod(j-a[i],k)]=true;
}
}
} if(dp[n-][])
{
printf("Divisible\n");
}
else
{
printf("Not divisible\n");
}
}
return ;
}

POJ1745动态规划的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. Git添加远程库

    body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...

  2. LeetCode OJ:Maximal Square(最大矩形)

    Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and ret ...

  3. LeetCode OJ:Range Sum Query 2D - Immutable(区域和2D版本)

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  4. SpringInAction--Spring Web应用之SpringMvc 注解配置

    Spring MVC 是当前Web服务器中常用的结构,今天就来学习这相关的知识,首先上图——Spring请求的时候所经历的坎坷之路: (书上原话,算是解释..) 在请求离开浏览器时① ,会带有用户所请 ...

  5. 监控摄像机常识:宽动态 (WDR)介绍和理解

    安装和使用监控摄像机经常会遇到强光问题. 因为我们不可能灵活选择摄像机的安装位置, 解决或者处理强光是一个无法避免的问题. 不管是由反光材质或者灯源造成此反光, 解决问题的方案来自于摄像机支持的一个特 ...

  6. TCP 初步认识

    TCP连接的建立---三次握手 第一次握手:客户端TCP首先给服务器端TCP发送一个特殊的TCP数据段. 该数据段不包含应用层数据,并将头部中的SYN位设置为1,所以该数据段被称为SYN数据段. 另外 ...

  7. 【sklearn】性能度量指标之ROC曲线(二分类)

    原创博文,转载请注明出处! 1.ROC曲线介绍 ROC曲线适用场景 二分类任务中,positive和negtive同样重要时,适合用ROC曲线评价 ROC曲线的意义 TPR的增长是以FPR的增长为代价 ...

  8. ubuntu16.04 LTS grafana安装与启动

    1.首先从官网上下载相应的包,网址为:http://grafana.org/download 2.安装 cd Downloads sudo dpkg -i grafana_4.1.2-14869897 ...

  9. 条件和循环(More Control Flow Tools)

    1.if语句 >>>a=7 >>> if a<0: ... print 'Negative changed to zero' ... elif a==0: . ...

  10. new Date()相关获取当月天数和当月第一天

    var  myDate = new Date(); //获取本月第一天周几 var monthFirst = new Date(myDate.getFullYear(), parseInt(myDat ...