题目大意

有N头牛,他们中间有些牛会认为另外一些牛“厉害”,且这种认为会传递,即若牛A认为牛B“厉害”,牛B认为牛C“厉害”,那么牛A也认为牛C“厉害”。现给出一些牛的数对(x, y)表示牛x认为牛y厉害。那么,求出所有的牛都认为该牛“厉害”的牛的个数。

题目分析

牛之间的关系,形成一个有向图。其中存在一些强连通分支,若强连通分支内的一个牛被所有牛认为“厉害”,那么整个强连通分支内的牛都被认为“厉害”。因此,将强连通分支合并为一个点,对图重构。 
    重构后的图为一个简单的有向图,题目转换为寻找能从所有点均可达的点的数目(实际数目为点代表的强连通分支内的点数目之和)。使用定理有向无环图中出度为0的点,可以从任何出度不为0的点到达。 
    因此,寻找该有向无环图中出度为0的点的个数,若出度为0的点的个数大于1,则这些出度为0的点之间互相不可达,则不存在所有点均可达的点;若出度为0的点的个数为1,则该出度为0的点代表的强连通分支内点的个数,即为题目的结果。

实现(c++)

#include<stdio.h>
#include<string.h>
#include<vector>
#include<stack>
#include<algorithm> using namespace std;
#define MAX_NODE 10005
#define min(a, b) a < b? a:b vector<int> gGraph[MAX_NODE];
stack<int> gStack;
bool gVisited[MAX_NODE]; //判断点是否被访问过
bool gInStack[MAX_NODE]; //判断点是否在栈中
int gDfn[MAX_NODE]; //在DFS过程中,点第一次被访问到的时间
int gLow[MAX_NODE]; //点x下方的点所能到达的序号最小的点的序号
int gIndex; int gClusterIndex;
int gClusterOfNode[MAX_NODE]; //每个点所属的强连通分支序号 //强连通分支结构体
struct Cluster{
int cluster_id;
int node_num;
vector<int> linked_cluster;
Cluster(int id, int num) :cluster_id(id), node_num(num){};
bool LinkedCluster(int cluster){
return find(linked_cluster.begin(), linked_cluster.end(), cluster) != linked_cluster.end();
}
void LinkCluster(int cluster){
linked_cluster.push_back(cluster);
}
~Cluster(){
linked_cluster.clear();
}
}; vector<Cluster> gClusters;
//tarjan 算法求强连通分支
void Tarjan(int u){
gDfn[u] = gLow[u] = ++gIndex;
gVisited[u] = true;
gInStack[u] = true;
gStack.push(u);
for (int i = 0; i < gGraph[u].size(); i++){
int v = gGraph[u][i];
if (gVisited[v] == false){
Tarjan(v);
gLow[u] = min(gLow[u], gLow[v]);
}
else if(gInStack[v]){ //注意,需要v在栈中才可以
gLow[u] = min(gLow[u], gDfn[v]);
}
}
if (gDfn[u] == gLow[u]){
int v, num = 0;
do{
v = gStack.top();
gClusterOfNode[v] = gClusterIndex;
gStack.pop();
gInStack[v] = false; //注意恢复
num++;
} while (u != v);
gClusters.push_back(Cluster(gClusterIndex, num)); gClusterIndex++;
}
} //将强连通分支的各个点染色之后,再重新建图
void ReconstructGraph(int n){
for (int u = 1; u <= n; u++){
for (int j = 0; j < gGraph[u].size(); j++){
int v = gGraph[u][j];
int uc = gClusterOfNode[u];
int vc = gClusterOfNode[v];
if (uc != vc && !gClusters[uc].LinkedCluster(vc))
gClusters[uc].LinkCluster(vc);
}
}
}
/*
int gRoot[MAX_NODE];
int GetRoot(int c){
if (gRoot[c] != c){
gRoot[c] = GetRoot(gRoot[c]);
}
return gRoot[c];
}
void Union(int c1, int c2){
int p1 = GetRoot(c1);
int p2 = GetRoot(c2);
if (p1 != p2){
gRoot[p1] = p2;
}
} bool DAG(){ //判断一个图是否为连通图,在此题中,可以不用判断
int n = gClusters.size(); for (int i = 0; i < n; i++){
gRoot[i] = i;
} for (int u = 0; u < n; u++){
for (int i = 0; i < gClusters[u].linked_cluster.size(); i++){
int v = gClusters[u].linked_cluster[i];
Union(u, v);
}
}
int r = GetRoot(0);
for (int i = 1; i < n; i ++){
if (r != GetRoot(i)){
return false;
}
}
return true;
}
*/
int main(){
int n, m, u, v;
while (scanf("%d %d", &n, &m) != EOF){
for (int i = 0; i <= n; i++){
gGraph[i].clear();
}
for (int i = 0; i < m; i++){
scanf("%d %d", &u, &v);
gGraph[u].push_back(v);
}
gIndex = 0;
gClusterIndex = 0;
memset(gInStack, false, sizeof(gInStack));
memset(gVisited, false, sizeof(gVisited));
gClusters.clear(); //Tarjan 求强连通分支
for (int i = 1; i <= n; i++){
if (!gVisited[i]){
Tarjan(i);
}
} //重新构图
ReconstructGraph(n); /*
if (!DAG()){
printf("0\n");
continue;
}
*/
int zero_outdegree_cluster = 0, result = 0;
for (int i = 0; i < gClusterIndex; i++){
if (gClusters[i].linked_cluster.empty()){
zero_outdegree_cluster++;
result = gClusters[i].node_num;
}
}
//若重构后的图中各个点不能构成一个连通图(将有向边变为无向边之后仍不能),那么就不存在一个点可以被其他所有点可达
//而此时,图中也肯定存在多于1个点,其出度为0.
//故,只需要判断重构后的图中,出度为0的点是否为1个即可。若出度为0的点有且只有一个,则返回该“点”(实际为一个强连通分支)
//中的点的数目,否则,返回0 if (zero_outdegree_cluster > 1){
result = 0;
}
printf("%d\n", result);
}
return 0;
}

poj_2186 强连通分支的更多相关文章

  1. Kosaraju 算法查找强连通分支

    有向图 G = (V, E) 的一个强连通分支(SCC:Strongly Connected Components)是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v, ...

  2. poj 2553 强连通分支与缩点

    思路:将所有强连通分支找出来,并进行缩点,然后找其中所有出度为0的连通分支,就是题目要求的. #include<iostream> #include<cstdio> #incl ...

  3. poj 2186 强连通分支 和 spfa

    思路: 建图时,分别建正向图edge和转置图T.用正向图edge来DFS,找出第一个被发现的强连通分支(如果该图存在题目要求的点,那么一定就是第一个被发现的).然后用spfa跑转置图T,判断被发现的点 ...

  4. poj 1236 Network of Schools【强连通求孤立强连通分支个数&&最少加多少条边使其成为强连通图】

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13800   Accepted: 55 ...

  5. 基于visual Studio2013解决算法导论之050强连通分支

     题目 强连通分支 解决代码及点评 // 强连通分支.cpp : 定义控制台应用程序的入口点. // #include<iostream> #define MAX 100 using ...

  6. 有向图强连通分支的Tarjan算法讲解 + HDU 1269 连通图 Tarjan 结题报告

    题目很简单就拿着这道题简单说说 有向图强连通分支的Tarjan算法 有向图强连通分支的Tarjan算法伪代码如下:void Tarjan(u) {dfn[u]=low[u]=++index//进行DF ...

  7. poj_2553 强连通分支&出度为0的点

    题目大意 N个点的有向图中,定义“好点”为: 从该点v出发可以到达的所有点u,均有一条路径使得u可达v. 求出图中所有的“好点”,并按照顺序从小到大输出出来. 题目分析 图存在多个强连通分支,强连通分 ...

  8. poj_1236 强连通分支

    题目大意 有N个学校,这些学校之间用一些单向边连接,若学校A连接到学校B(B不一定连接到A),那么给学校A发一套软件,则学校B也可以获得.现给出学校之间的连接关系,求出至少给几个学校分发软件,才能使得 ...

  9. 【2186】Popular Cows(强连通分支及其缩点)

    id=2186">[2186]Popular Cows(强联通分支及其缩点) Popular Cows Time Limit: 2000MS   Memory Limit: 65536 ...

随机推荐

  1. Python translate()方法

    描述 Python translate() 方法根据 maketrans() 方法给出的字符映射转换表转换字符串中的字符. 语法 translate() 方法语法: Python3中: S.trans ...

  2. 如何将.sof转换成.jic

    因为不同版本的QUARTUS II可能界面稍有差异,因此就不做截图演示了,只说操作步骤: 1.通过综合生成包含FPGA配置数据的.sof文件 2.选择转换编程文件,菜单File->convert ...

  3. store.js 跨浏览器的localStorage

    store.js 跨浏览器的localStorage 我们总是想要储存一些数据在浏览器端,却对复杂的兼容性头疼,store.js很好的解决了这些问题. store.js ☍ 使用它相当简单: // 储 ...

  4. spring in action 7.2 小结

    1 对于二进制文件上传功能的实现.在spring中使用multipart来处理,处理方式有两种. CommonsMultipartResolver:使用Jakarta Commons FileUplo ...

  5. redis五种基本数据类型

    1.string类:一个key对应一个value(key:value).string类是二进制安全,可以包含任何数据(例如:图片.音乐). 2.hash类:string类型field和value的映射 ...

  6. 给ECharts添加右键点击事件,实现右键功能菜单

    由于项目的需要,使用ECharts 的力导向图来实现 整个EDW数据架构的血缘分析,由于ECharts并没有给组件定义有右键的事件,同时ECharts是开源的项目,所以研究了下源码,将ECharts2 ...

  7. MongoDB,还有一个角度看数据

    传智-玄痛(传智播客北京校区C/C++学院技术指导老师) MongoDB的起源 几年前 10gen 公司做了 SaaS 方面的研发,由于公司一个 MongoDB 产品存储接口的易用性,用户评价很好,公 ...

  8. mysql 导入导出数据库、数据表的方法

    mysql 导入导出数据库.数据表的方法. Linux操作系统中,均在控制台下操作.1,导入数据库:前提:数据库和数据表要存在(已经被创建)(1)将数据表 test_user.sql 导入到test ...

  9. python模块之XlsxWriter 详解

    Xlsx是python用来构造xlsx文件的模块,可以向excel2007+中写text,numbers,formulas 公式以及hyperlinks超链接. 可以完成xlsx文件的自动化构造,包括 ...

  10. hdu1428(记忆化搜索)

    题意:“他考虑从A区域到B区域仅当存在一条从B到机房的路线比任何一条从A到机房的路线更近(否则可能永远都到不了机房了…”这句话一定要理解清楚.就是说,对于当前位置,如果下一个状态与终点的最短距离大于或 ...