矩阵乘法,顾名思义矩阵与矩阵相乘,

两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等

相乘原则:

a b     *     A B   =   a*A+b*C  a*c+b*D

c d        C D   =   c*A+d*C  c*A+d*C

上代码

 struct matrix
{
ll a[maxn][maxn];
};
matrix matrix_mul(matrix x,matrix y)
{
matrix temp;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
temp.a[i][j]=;
for(int k=;k<=n;k++)
{
temp.a[i][j]+=(x.a[i][k]*y.a[k][j])%mod;
temp.a[i][j]%=mod;
}
}
return temp;
}

∵矩阵乘法满足结合律(不满足交换律)

∴可用快速幂

矩阵快速幂与一般快速幂极其相似,只是把两个数相乘改成了两个矩阵相乘(用个相乘函数即可),所以完全可以按照快速幂的写法来写;

matrix matrix_pow(matrix a,ll b)
{
matrix v;
for(int i=;i<=n;i++) v.a[i][i]=; //初始化,就和把数字初始化成 1 一样,矩阵这样初始化
while(b>)
{
if(b&) v=matrix_mul(v,a);
a=matrix_mul(a,a);
b=b>>;
}
return v;
}

※矩阵快速幂解决线性递推式

举个栗子(我有一盆栗子随便举) 斐波那契序列 (F[n]=F[n-1]+F[n-2])

很多童鞋知道矩阵快速幂可解决斐波那契序列,但并不知道原因

事实上矩阵快速幂可以解决绝大多数线性递推式(不敢说所有=-=,万一呢)

对于斐波那契,递推矩阵(自己起的=-=)为

1 1

0 1

具体推导初始矩阵过程如下(方法不唯一):(以斐波那契额为例)

我们要做的是使F[n-1]+F[n-2]乘某个矩阵得出第一项为F[n](个人理解的=-=)

则 F[n]     =  a  b   *   F[n-1]

F[n-1]      c  d        F[n-2]

∵F[n]=F[n-1]+F[n-2]

则可得 F[n-1]+F[n-2] = a  b   *  F[n-1]

    F[n-1]      c  d    F[n-2]

设F[n-1]为A,F[n-2]为B

则为 A+B  = a  b   *   A    =   a*A+b*B   (将右边矩阵乘开了)

B       c  d   *   B         c*A+d*B

则可以看到 a*A+b*B=A+B

      c*A+d*B=B

很容易看出a=1,b=1,c=0,d=1

所以递推矩阵为

1 1

0 1

普通斐波那契F[1]=1,F[2]=1;

那为什么可以用矩阵快速幂呢?

设上边的0,1为A,斐波那契初始矩阵为B,当N》=2的时候我们可以求斐波那契

比如斐波那契的3项就应该是

A*A*B即可(因为N大于等于2所以要把求得项数减去1然后再乘)

类似的我们可以求斐波那契的第N项

即A*A*A*......*A*B一共乘N-1项。

这个时候我们发现都是乘法耶~那我们就快速幂把,好~快速幂所以我们就完成了快速幂。

所以每一n-1幂所对应的F[n]就是答案,

但F[1]与F[2]为其他数呢,就不能只是这样做了

∵矩阵乘法满足交换律

∴现将递推矩阵进行n次幂运算

再使其乘 F[1] 矩阵,即可得出答案=-=

     F[2]

矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式的更多相关文章

  1. 线性齐次递推式快速求第n项 学习笔记

    定义 若数列 \(\{a_i\}\) 满足 \(a_n=\sum_{i=1}^kf_i \times a_{n-i}\) ,则该数列为 k 阶齐次线性递推数列 可以利用多项式的知识做到 \(O(k\l ...

  2. 【瞎讲】 Cayley-Hamilton 常系数齐次线性递推式第n项的快速计算 (m=1e5,n=1e18)

    [背诵瞎讲] Cayley-Hamilton 常系数齐次线性递推式第n项的快速计算 (m=1e5,n=1e18) 看CSP看到一题"线性递推式",不会做,去问了问zsy怎么做,他并 ...

  3. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

  4. HDU-6185-Covering(推递推式+矩阵快速幂)

    Covering Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  5. HDU - 2604 Queuing(递推式+矩阵快速幂)

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. HDU5950 Recursive sequence 非线性递推式 矩阵快速幂

    题目传送门 题目描述:给出一个数列的第一项和第二项,计算第n项. 递推式是 f(n)=f(n-1)+2*f(n-2)+n^4. 由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题 ...

  7. POJ 3734 Blocks(矩阵快速幂+矩阵递推式)

    题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 .   设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数 ...

  8. hdu 5950 Recursive sequence 递推式 矩阵快速幂

    题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...

  9. HDU 5863 cjj's string game ( 16年多校10 G 题、矩阵快速幂优化线性递推DP )

    题目链接 题意 : 有种不同的字符,每种字符有无限个,要求用这k种字符构造两个长度为n的字符串a和b,使得a串和b串的最长公共部分长度恰为m,问方案数 分析 : 直觉是DP 不过当时看到 n 很大.但 ...

随机推荐

  1. atitit agt sys 设置下级代理功能设计.docx

    atitit agt sys 设置下级代理功能设计.docx 显示界面1 先查询显示 set_sub.js1 设置代理2 /atiplat_cms/src/com/attilax/user/Agent ...

  2. C#学习系列-类与结构的区别

    参考:http://www.microsoftvirtualacademy.com/Content/ViewContent.aspx?et=9851&m=9830&ct=31038 如 ...

  3. Eclipse中java向数据库中添加数据,更新数据,删除数据

    前面详细写过如何连接数据库的具体操作,下面介绍向数据库中添加数据. 注意事项:如果参考下面代码,需要 改包名,数据库名,数据库账号,密码,和数据表(数据表里面的信息) package com.ning ...

  4. transform:rotate()将元素进行不同角度的旋转

    通过设置transform:rotate()可以将元素进行不同角度的旋转: 下面是一些测试代码: <!DOCTYPE html> <html> <head> < ...

  5. SQL SERVER 查询性能优化——分析事务与锁(五)

    SQL SERVER 查询性能优化——分析事务与锁(一) SQL SERVER 查询性能优化——分析事务与锁(二) SQL SERVER 查询性能优化——分析事务与锁(三) 上接SQL SERVER ...

  6. ScheduleThreadPoolExecutor的工作原理与使用示例

    欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. ScheduleExecutorService接口.ScheduledFuture ...

  7. KendoUI系列:AutoComplete

    1.基本使用 <link href="@Url.Content("~/C ontent/kendo/2014.1.318/kendo.common.min.css" ...

  8. 正则表达式之JSP、Android

    对于正则表达式,很多朋友一定不陌生,因为在我们做网站或apk时,当需要用户提交表单时,很多时间需要判断用户的输入是否合法,这个时间正则表达式就可以发挥它的作用了,我们知道正则表达式在这个方面是很强大的 ...

  9. Android线程处理之Handler总结

    上一篇为大家介绍了如何通过Handler对象把Message数据发送到主线程,我想大家一定都已经掌握了,本篇我将以一个例子的方式为大家总结一下Handler的使用,例子是通过Handler实现一个图片 ...

  10. HTML5的学习--performance

    HTML5提供的performance接口精确的告诉我们当访问一个网站页面时当前网页每个处理阶段的精确时间(timestamp),以方便我们进行前端分析. 它是浏览器的直接实现,比在网页中用js设置D ...