参考与前言

Summary: 浩哥推荐的一篇 无人机下的建图 and planning实验

Type: ICRA

Year: 2021

论文链接:https://arxiv.org/abs/2105.04419

youtube presentation video:https://youtu.be/Bojh6ylYUOo

代码链接:https://github.com/zhudelong/VDB-EDT

1. Motivation

Eucliden distance transform EDT 对于机器人运动规划是很重要的,但是生成EDT 是比较费时的一件事,同时需要时刻更新并维护这样一个地图,本篇文章主要 通过优化数据结构和distance transform的过程来提升EDT算法的速度

在本文中,我们采用了树结构进行 hashing-based EDTs,主要是在做规划时发现 最优轨迹其实值需要考虑一定范围的障碍物, full distance information其实对于规划来说是冗余的,所以实际free部分都是一个值。These regions can then be efficiently encoded by a few number of tree nodes. Such a property is called spatial coherency, which can help further reduce memory consumption.

Benefiting from the fast index and caching systems, VDB achieves a much faster random access speed than Octree and also exhibits a competitive performance with the voxel hashing.

Contribution

  • the first time introduce the VDB data structure for distance field representation, which significantly reduces the memory consumption of EDT.
  • we propose a novel algorithm to facilitate distance transform procedure and significantly improve the running speed of conventional EDT algorithms.

2. Method

首先是问题定义,一个典型的distance transform问题 可以表达为如下公式:

\[\begin{array}{ll}d\left(x_i\right)=\min _{x_j} f\left(x_i, x_j\right), \\\text { s.t. } \quad x_i \in \mathcal{M}_f, x_j \in \mathcal{M}_o\end{array}
\]

其中,Mf是指free space,Mo是被占据空间,x为在grid map M中的坐标,目标函数f表示xi到xj之间的距离,目标是搜索对于每个xi都找其最近的xj作为距离

随后问题有了d(x) 后 我们就走到了 要找到一条安全的路径,则问题可表述为如下:

\[\begin{array}{ll}\min _{x_{0: N}} & \sum_{i=0}^N \alpha\left\|x_{i+1}-x_i\right\|+(1-\alpha) \max \left(0, d_{\max }-d\left(x_i\right)\right) \\\text { s.t. } & x_i, x_{i+1} \in \mathcal{M}_f \\& x_0=x_s, x_N=x_f \\& g\left(x_i, x_{i-1}, x_{i+1}\right)<\theta\end{array}
\]

其中,dmax是最大的transform distance,xs起点,xf终点,alpha为balance coefficient,g<theta主要是限制两个连续点之间产生较大的角度,平滑轨迹用的。目标函数中 前者为路径长度的cost,后者为避障的cost

2.1 数据结构

主要是介绍了VDB结构,由Museth[25] 提出的。It sufficiently exploits the sparsity of volumetric data, and employs a variant of B+ tree [32] to represent the data hierarchically.

下图是1D结构下的VDB,其和B+的几个特性是一致的,root node为索引,由hashmap建立,下面为internal node 和 leaf node保存了数据。也有本质上的不同:

it encodes values in internal nodes, called tile value. The tile value and child pointer exclusively use the same memory unit, and a flag is additionally leveraged to identify the different cases. A tile value only takes up tens of bits memory but can represent a large area in the distance field, which is the key feature leveraged to improve memory efficiency.

B+是一种平衡tree,在数据库中常用,主要原因是对于树结构的查询,程序加载子节点都需要进行一次磁盘IO,磁盘IO 比 读内存IO要慢 所以多叉的B+ tree可以减少I/O的次数

参考:b站视频 “索引”的原理 4min 建议感兴趣的可以再查询进阶数据结构书籍了解 实际上代码是直接openvdb库直接构建的

  • VDB: the branching factors are very large and variable, making the tree shallow and wide
  • Octree-based: deep and narrow, thus not fast enough for distance transform.

2.2 VDB-EDT

感觉这个看文中会比较好 主要是针对伪代码的解释

The distance field represented by VDB is essentially a sparse volumetric grid, and each field point is represented by a grid cell s indexed by a 3-D coordinate.

更新部分code:

void VDBMap::update_occmap(FloatGrid::Ptr grid_map, const tf::Vector3 &origin, XYZCloud::Ptr xyz)
{
auto grid_acc = grid_map->getAccessor();
auto tfm = grid_map->transform(); openvdb::Vec3d origin3d(origin.x(), origin.y(), origin.z());
openvdb::Vec3d origin_ijk = grid_map->worldToIndex(origin3d); for (auto point = xyz->begin(); point != xyz->end(); ++point) {
openvdb::Vec3d p_xyz(point->x, point->y, point->z);
openvdb::Vec3d p_ijk = grid_map->worldToIndex(p_xyz);
openvdb::Vec3d dir(p_ijk - origin_ijk);
double range = dir.length();
dir.normalize(); // Note: real sensor range should stractly larger than sensor_range
bool truncated = false;
openvdb::math::Ray<double> ray(origin_ijk, dir);
// openvdb::math::DDA<openvdb::math::Ray<double>, 0> dda(ray, 0., std::min(SENSOR_RANGE, range)); // if (START_RANGE >= std::min(SENSOR_RANGE, range)){
// continue;
// }
openvdb::math::DDA<openvdb::math::Ray<double>, 0> dda(ray, 0, std::min(SENSOR_RANGE, range)); // decrease occupancy
do {
openvdb::Coord ijk(dda.voxel()); float ll_old;
bool isKnown = grid_acc.probeValue(ijk, ll_old);
float ll_new = std::max(L_MIN, ll_old+L_FREE); if(!isKnown){
grid_distance_->dist_acc_->setValueOn(ijk);
} // unknown -> free -> EDT initialize else if(ll_old >= 0 && ll_new < 0){
grid_distance_->removeObstacle(ijk);
} // occupied -> free -> EDT RemoveObstacle grid_acc.setValueOn(ijk, ll_new);
dda.step(); } while (dda.time() < dda.maxTime()); // increase occupancy
if ((!truncated) && (range <= SENSOR_RANGE)){
for (int i=0; i < HIT_THICKNESS; ++i) {
openvdb::Coord ijk(dda.voxel()); float ll_old;
bool isKnown = grid_acc.probeValue(ijk, ll_old);
float ll_new = std::min(L_MAX, ll_old+L_OCCU); if(!isKnown){
grid_distance_->dist_acc_->setValueOn(ijk);
} // unknown -> occupied -> EDT SetObstacle
else if(ll_old < 0 && ll_new >= 0){
grid_distance_->setObstacle(ijk);
} // free -> occupied -> EDT SetObstacle grid_acc.setValueOn(ijk, ll_new);
dda.step();
}
} // process obstacle } // end inserting /* commit changes to the open queue*/
}

3. 实验及结果

各个阈值对时间的影响,其中对比了几个baseline方法如下:

  • A commonly-used general EDT [18] (denoted without -Ex suffix)
  • the proposed algorithm (denoted with -Ex suffix).
  • Two implementations based on the array and VDB data structures to compare their memory efficiency (denoted with Arr- and VDB- prefix, respectively)

可以看到 在时间上-Ex 的耗时都比无Ex的快,虽然VDB的速度上比arr的还是慢了一点 10%-25%,但是从memeory cost上确实节约了30-60%的 Herein, the increment of time cost is inevitable, as VDB is based on tree structures and has a slower random access speed than the array-based implementation

同样表格是在数据集上的表现,在global 和 incremental transform会慢一点,但是在memory上省了不少

还有一个就是无人机在仿真环境中建图并有planning效果:

4. Conclusion

提出了一种VDB-EDT算法去解决 distance transform problem. The algorithm is implemented based on a memory-efficient data structure and a novel distance transform procedure, which significantly improves the memory and runtime efficiency of EDTs.

这项工作突破了通常的EDT的限制,也可以为后面基于VDB-based mapping, distance transform and safe motion planning的研究进行使用


赠人点赞 手有余香 ;正向回馈 才能更好开放记录 hhh

【论文阅读】ICRA2021: VDB-EDT An Efficient Euclidean Distance Transform Algorithm Based on VDB Data Struct的更多相关文章

  1. 【论文阅读】ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

    ShuffleNet: An Extremely Efficient Convolutional Neural Network for MobileDevices

  2. 论文阅读笔记六十四: Architectures for deep neural network based acoustic models defined over windowed speech waveforms(INTERSPEECH 2015)

    论文原址:https://pdfs.semanticscholar.org/eeb7/c037e6685923c76cafc0a14c5e4b00bcf475.pdf 摘要 本文研究了利用深度神经网络 ...

  3. 【论文阅读】An Anchor-Free Region Proposal Network for Faster R-CNN based Text Detection Approaches

    懒得转成文字再写一遍了,直接把做过的PPT放出来吧. 论文连接:https://link.zhihu.com/?target=https%3A//arxiv.org/pdf/1804.09003v1. ...

  4. 论文阅读之:Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space

    Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space  2018-01-04  ...

  5. 论文阅读-Temporal Phenotyping from Longitudinal Electronic Health Records: A Graph Based Framework

  6. 论文阅读:《Bag of Tricks for Efficient Text Classification》

    论文阅读:<Bag of Tricks for Efficient Text Classification> 2018-04-25 11:22:29 卓寿杰_SoulJoy 阅读数 954 ...

  7. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  8. [置顶] 人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)

    这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...

  9. 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)

    白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...

  10. BITED数学建模七日谈之三:怎样进行论文阅读

    前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进 ...

随机推荐

  1. 如何加速C++文件的编译速度?

    一.为什么慢? 重要的一个原因是C++的基本 头文件-源文件的编译模型: 每个源文件为一个编译单元 头文件数量多,可能会包含上百甚至上千个头文件 存在重复解析,每个编译单元中,这些头文件都要从硬盘里读 ...

  2. iOS LLVM 中的宏定义

    在阅读 Objc 库源码时常常会遇到很多宏定义,比如宏 SUPPORT_INDEXED_ISA.SUPPORT_PACKED_ISA,代码如下所示: // Define SUPPORT_INDEXED ...

  3. Xcode编译WebKit

    下载WebKit源码 1)进入https://webkit.org/ 2)点击页面的 Get Started 进入新页面,如下图所示 3)点击 Getting the code 进入新页面,如下图所示 ...

  4. zabbix使用

    安装部署6.0版本 获取仓库 https://www.zabbix.com/cn/download?zabbix=6.0&os_distribution=centos&os_versi ...

  5. Authentication failed. Some common reasons include:

    问题无论是pull.clone还是push都报错 fatal: Out of memory, malloc failed (tried to allocate 301989888 bytes)fata ...

  6. winform 关于无边框和拖动窗体边缘改变尺寸的 踩坑笔记

    在做美化winform窗体,实现自定义窗体标题栏,圆角边框,并且支持拖拽窗体,最后还要能拖动窗体左.右.下边缘时,改变窗体的宽和高. 一般网上的都有代码,窗体设成无边框,自己加个panel就能实现自定 ...

  7. win10 使用idea 构建一个ssm的模板maven项目

    一.创建一个maven项目   1.1建立一个module作为web项目   File->New->project 选择maven,默认jdk,下面的列表什么都不选,next->输入 ...

  8. WPF摄像头使用(WPFMediaKit)

    添加WPFMediaKit引用 使用WPFMediaKit操作摄像头需要安装WPFMediaKit相关的Nuget包.选中需要进行摄像头操作的项目,然后通过Nuget安装即可. 页面代码 引入命名空间 ...

  9. 在kubernetes里使用AppArmor限制容器对资源的访问

    目录 一.系统环境 二.前言 三.AppArmor简介 四.AppArmor和SELinux的区别 五.使用AppArmor限制nginx程序访问目录 5.1 安装nginx 5.2 修改nginx的 ...

  10. Yii框架Ar操作

    1.$admin=Admin::model()->findAll($condition,$params);        该方法是根据一个条件查询一个集合,如:  findAll("u ...