文心一言 VS 讯飞星火 VS chatgpt (149)-- 算法导论12.2 4题
五、用go语言,证明:如果一棵二叉搜索树中的一个结点有两个孩子,那么它的后继没有左孩子,它的前驱没有右孩子。
灵捷3.5 。
文心一言:
为了证明这个性质,我们首先需要明确二叉搜索树(BST)的定义和特性。一个二叉搜索树是一个有序的树,其中每个节点的左子树上的所有值都小于节点的值,而右子树上的所有值都大于节点的值。
在这个定义下,我们可以开始证明这个性质。
首先,假设节点x有两个孩子节点,分别是左孩子节点L和右孩子节点R。
对于后继节点:
根据BST的定义,由于节点x有两个孩子,它的后继节点(假设为节点S)必然存在于节点x的右子树中。
同样根据BST的定义,在节点S的左子树中的所有节点的值都小于节点S的值。
进一步地,如果节点S有左孩子,那么它的左孩子的值将小于节点S的值,这与BST的定义相矛盾。因此,节点S没有左孩子。
对于前驱节点:
同样地,前驱节点(假设为节点P)必然存在于节点x的左子树中。
根据BST的定义,在节点P的右子树中的所有节点的值都大于节点P的值。
如果节点P有右孩子,那么它的右孩子的值将大于节点P的值,这与BST的定义相矛盾。因此,节点P没有右孩子。
综上所述,如果一棵二叉搜索树中的一个结点有两个孩子,那么它的后继没有左孩子,它的前驱没有右孩子。

讯飞星火,注释掉node := root.Left.Right,可运行:
package main
import (
"fmt"
)
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
func findMin(node *TreeNode) *TreeNode {
for node.Left != nil {
node = node.Left
}
return node
}
func findMax(node *TreeNode) *TreeNode {
for node.Right != nil {
node = node.Right
}
return node
}
func main() {
// 构建一个二叉搜索树
root := &TreeNode{Val: 20}
root.Left = &TreeNode{Val: 10}
root.Right = &TreeNode{Val: 30}
root.Left.Left = &TreeNode{Val: 5}
root.Left.Right = &TreeNode{Val: 15}
root.Right.Left = &TreeNode{Val: 25}
root.Right.Right = &TreeNode{Val: 35}
// 找到节点15,它的后继是25,前驱是10
node := root.Left.Right
successor := root.Right.Left
predecessor := root.Left
// 验证后继没有左孩子,前驱没有右孩子
if successor.Left != nil {
fmt.Println("后继有左孩子")
} else {
fmt.Println("后继没有左孩子")
}
if predecessor.Right != nil {
fmt.Println("前驱有右孩子")
} else {
fmt.Println("前驱没有右孩子")
}
}


360智脑:
可以使用递归的方式,在中序遍历二叉树时进行判断。
以下是Go语言的代码实现:
package main
import (
<t>"fmt"
)
func inorderSuccessor(node *Node) *Node {
<t>if node == nil {
<t><t>return nil
<t>}
<t>for i := 2; i <= len(node.kids); i++ {
<t><t>node = node.kids[i]
<t>}
<t>for i := 1; i < len(node.kids); i++ {
<t><t>if node.kids[i].left == nil && node.kids[i].right == nil {
<t><t><t>return node
<t><t>}
<t>}
<t>return nil
}
func inorderPredecessor(node *Node) *Node {
<t>if node == nil {
<t><t>return nil
<t>}
<t>for i := 1; i < len(node.kids); i++ {
<t><t>node = node.kids[i]
<t>}
<t>for i := 2; i <= len(node.kids); i++ {
<t><t>node = node.kids[i]
<t>}
<t>for i := len(node.kids) - 1; i >= 0; i-- {
<t><t>if node.kids[i].left == nil && node.kids[i].right == nil {
<t><t><t>return node
<t><t>}
<t>}
<t>return nil
}
func main() {
<t>// 创建测试数据
<t>root := &Node{val: 1, kids: make([]*Node, 2)}
<t>root.kids[0] = &Node{val: 2, kids: make([]*Node, 1)}
<t>root.kids[1] = &Node{val: 3, kids: make([]*Node, 1)}
<t>// 中序遍历并验证
<t>inorder := []int{2, 3, 1}
<t>for _, v := range inorder {
<t><t>node := root
<t><t>for _, child := range node.kids {
<t><t><t>if inorderSuccessor(child) != nil {
<t><t><t><t>fmt.Println("后继有左孩子")
<t><t><t><t>break
<t><t><t>}
<t><t><t>if inorderPredecessor(child) != nil {
<t><t><t><t>fmt.Println("前驱有右孩子")
<t><t><t><t>break
<t><t><t>}
<t><t>}
<t><t>if inorderSuccessor(node) != nil || inorderPredecessor(node) != nil {
<t><t><t>fmt.Println("无后继或前驱")
<t><t><t>break
<t><t>}
<t>}
}
运行结果为:
无后继或前驱



智谱清言,抛panic:
在二叉搜索树(BST)中,如果一个节点有两个子节点,那么这个节点要么是一个叶节点(有两个子节点但没有父节点),要么是一个中间节点(有一个父节点和两个子节点)。我们可以通过递归地检查每个节点的父节点和子节点来证明这个命题。
以下是使用Go语言编写的证明:
package main
import (
"fmt"
)
// TreeNode 定义二叉搜索树的节点结构
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
// 声明一个全局变量,用来存储根节点
var root *TreeNode
// 定义一个函数,用来插入节点
func insert(node *TreeNode, val int) {
if root == nil {
root = &TreeNode{Val: val}
} else {
// ... 这里插入节点的逻辑 ...
}
}
// 定义一个函数,用来检查一个节点是否具有两个子节点
func (n *TreeNode) hasTwoChildren() bool {
if n == nil || n.Left == nil || n.Right == nil {
return false
}
return true
}
// 定义一个函数,用来打印树的结构
func printTree(node *TreeNode, level int) {
if node == nil {
return
}
fmt.Printf("%s%d\n", strings.Repeat("\t", level), node.Val)
printTree(node.Left, level+1)
printTree(node.Right, level+1)
}
func main() {
// 插入节点
insert(root, 1)
insert(root.Left, 2)
insert(root.Left.Left, 3)
insert(root.Right, 4)
insert(root.Right.Left, 5)
// 打印树的结构
fmt.Println("Preorder traversal of the given tree:")
printTree(root, 0)
// 检查节点是否有两个子节点
if root.hasTwoChildren() {
fmt.Println("The root has two children.")
}
// 声明一个全局变量,用来存储后继和前驱
var successor, predecessor *TreeNode
// 查找后继
successor = root.findSuccessor()
if successor != nil {
fmt.Println("The successor of root has", successor.Left == nil, "left child and", successor.Right == nil, "right child.")
}
// 查找前驱
predecessor = root.findPredecessor()
if predecessor != nil {
fmt.Println("The predecessor of root has", predecessor.Left == nil, "left child and", predecessor.Right == nil, "right child.")
}
}
// 查找节点的后继
func (n *TreeNode) findSuccessor() *TreeNode {
if n.Right != nil {
return n.Right
}
return n.Left
}
// 查找节点的前驱
func (n *TreeNode) findPredecessor() *TreeNode {
if n.Left != nil {
return n.Left
}
return n.Right
}
在这个代码中,我们定义了一个TreeNode结构体来表示二叉搜索树中的节点,以及一些辅助函数来插入节点、打印树的结构、查找后继和前驱节点。
然后,我们使用这些函数来创建一棵二叉搜索树,并检查具有两个子节点的节点的前驱和后继是否有子节点。
这个代码没有具体实现查找前驱和后继的逻辑,但你可以根据需要来实现这部分代码。通过这样的递归检查,你可以证明如果一个节点有两个子节点,那么它的后继没有左孩子,它的前驱没有右孩子。



通义千问:
要证明如果一棵二叉搜索树中的一个结点有两个孩子,那么它的后继没有左孩子,它的前驱没有右孩子,我们可以从二叉搜索树的定义和性质入手。二叉搜索树(BST)具有以下特性:
- 对于任意节点
node,其所有左子树中的节点值都小于node的值。 - 对于任意节点
node,其所有右子树中的节点值都大于node的值。
基于这些特性,我们可以考虑如何找到一个给定节点的后继和前驱。
后继节点
在二叉搜索树中,一个节点 x 的后继节点是指比 x 大的最小节点。为了找到后继节点,我们可以通过以下步骤进行:
- 如果
x有一个右子树,则x的后继是其右子树中的最小节点。 - 如果
x没有右子树,我们需要沿着父节点回溯,直到找到一个节点y是其父节点的左子节点。这样,y就是x的后继。
根据以上描述,我们可以得出结论:对于任何节点的后继节点,它要么没有左子节点(情况1),要么就是其父节点的左子节点(情况2)。这两种情况下,后继节点都没有左孩子。
前驱节点
在二叉搜索树中,一个节点 x 的前驱节点是指比 x 小的最大节点。为了找到前驱节点,我们可以通过以下步骤进行:
1.如果 x 有一个左子树,则 x 的前驱是其左子树中的最大节点。
2.如果 x 没有左子树,我们需要沿着父节点回溯,直到找到一个节点 y 是其父节点的右子节点。这样,y 就是 x 的前驱。
同样地,根据以上描述,我们可以得出结论:对于任何节点的前驱节点,它要么没有右子节点(情况1),要么就是其父节点的右子节点(情况2)。这两种情况下,前驱节点都没有右孩子。
因此,我们通过分析二叉搜索树的特性和查找后继、前驱节点的过程,可以证明:如果一棵二叉搜索树中的一个结点有两个孩子,那么它的后继没有左孩子,它的前驱没有右孩子。

天工,加上package 卖弄,正常运行:
以下是使用 Go 语言实现证明的代码:
type node struct {
value int
left *node
right *node
}
func (n *node) hasLeftChild() bool {
return n.left != nil
}
func (n *node) hasRightChild() bool {
return n.right != nil
}
func (n *node) hasSuccessor() bool {
if n.right != nil {
return n.right.hasLeftChild()
}
return false
}
func (n *node) hasPredecessor() bool {
if n.left != nil {
return n.left.hasRightChild()
}
return false
}
func main() {
// 构造一个二叉搜索树
root := &node{value: 1}
root.left = &node{value: 2}
root.right = &node{value: 3}
root.left.right = &node{value: 4}
root.right.left = &node{value: 5}
// 验证后继没有左孩子
if root.hasSuccessor() && root.left.hasLeftChild() {
fmt.Println("错误:根节点的后继有左孩子")
} else {
fmt.Println("正确:根节点的后继没有左孩子")
}
// 验证前驱没有右孩子
if root.hasPredecessor() && root.left.hasRightChild() {
fmt.Println("错误:根节点的前驱有右孩子")
} else {
fmt.Println("正确:根节点的前驱没有右孩子")
}
}
在这个代码中,我们定义了一个 node 结构体表示二叉搜索树的节点,其中 value 表示节点的值,left 和 right 分别表示节点的左子树和右子树。我们还定义了四个方法:
hasLeftChild():判断节点是否有左孩子。hasRightChild():判断节点是否有右孩子。hasSuccessor():判断节点是否有后继。hasPredecessor():判断节点是否有前驱。
在 main 函数中,我们构造了一个二叉搜索树,并验证了根节点的后继没有左孩子,根节点的前驱没有右孩子。如果验证结果正确,输出“正确”,否则输出“错误”。


灵小智,代码正常运行:
以下是用Go语言编写的程序,证明了如果一棵二叉搜索树中的一个节点有两个孩子,那么它的后继没有左孩子,它的前驱没有右孩子:
package main
import "fmt"
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
func findSuccessor(root *TreeNode) *TreeNode {
if root == nil {
return nil
}
if root.Right != nil {
// 寻找右子树的最左节点
curr := root.Right
for curr.Left != nil {
curr = curr.Left
}
return curr
} else {
// 寻找父节点,并向上回溯
curr := root
parent := curr.Left
for parent != nil && parent.Right == curr {
curr = parent
parent = parent.Left
}
return parent
}
}
func findPredecessor(root *TreeNode) *TreeNode {
if root == nil {
return nil
}
if root.Left != nil {
// 寻找左子树的最右节点
curr := root.Left
for curr.Right != nil {
curr = curr.Right
}
return curr
} else {
// 寻找父节点,并向上回溯
curr := root
parent := curr.Right
for parent != nil && parent.Left == curr {
curr = parent
parent = parent.Right
}
return parent
}
}
func main() {
// 创建一个二叉搜索树
root := &TreeNode{
Val: 4,
Left: &TreeNode{
Val: 2,
Left: &TreeNode{Val: 1},
Right: &TreeNode{Val: 3},
},
Right: &TreeNode{
Val: 6,
Left: &TreeNode{Val: 5},
Right: &TreeNode{Val: 7},
},
}
// 寻找节点2的后继
successor := findSuccessor(root.Left)
fmt.Println("Node 2的后继节点值为:", successor.Val)
// 寻找节点6的前驱
predecessor := findPredecessor(root.Right)
fmt.Println("Node 6的前驱节点值为:", predecessor.Val)
}
在这个程序中,我们定义了一个TreeNode结构,表示二叉搜索树的节点。findSuccessor函数用于寻找给定节点的后继节点,而findPredecessor函数则用于寻找给定节点的前驱节点。
我们创建了一个二叉搜索树,并分别使用findSuccessor和findPredecessor函数来寻找节点2的后继节点和节点6的前驱节点。根据二叉搜索树的性质,我们可以得出结论:如果一个节点有两个孩子,则它的后继节点没有左孩子,它的前驱节点没有右孩子。
输出结果为:
Node 2的后继节点值为: 3
Node 6的前驱节点值为: 5
这验证了上述的性质。



chatgpt,代码正常运行:
下面是使用 Go 语言实现的二叉搜索树,并通过代码证明了题目中的结论:
package main
import "fmt"
type Node struct {
Value int
Left, Right *Node
}
func insert(root **Node, value int) {
if *root == nil {
*root = &Node{Value: value}
return
}
if value < (*root).Value {
insert(&(*root).Left, value)
} else {
insert(&(*root).Right, value)
}
}
func inorderSuccessor(node *Node) *Node {
current := node.Right
for current.Left != nil {
current = current.Left
}
return current
}
func inorderPredecessor(node *Node) *Node {
current := node.Left
for current.Right != nil {
current = current.Right
}
return current
}
func main() {
var root *Node
insert(&root, 5)
insert(&root, 3)
insert(&root, 8)
insert(&root, 2)
insert(&root, 4)
insert(&root, 7)
insert(&root, 9)
nodeWithTwoChildren := root // Example node with two children: value=5 (middle of the tree)
successor := inorderSuccessor(nodeWithTwoChildren)
predecessor := inorderPredecessor(nodeWithTwoChildren)
fmt.Println("Inorder Successor of", nodeWithTwoChildren.Value, "is", successor.Value) // Should print "7"
fmt.Println("Inorder Predecessor of", nodeWithTwoChildren.Value, "is", predecessor.Value) // Should print "4"
}
这段代码创建了一棵二叉搜索树,并找到了具有两个孩子节点的节点的后继和前驱。输出结果证明了题目中的结论。


kimi,node.Right) {去掉右小括号,抛panic:
在 Go 语言中,我们可以通过实现一个二叉搜索树(BST)结构并添加一些辅助方法来证明这个结论。首先,我们需要定义一个 BST 结构,然后实现插入、中序遍历、前驱和后继等方法。以下是实现的代码:
package main
import (
"fmt"
)
type Node struct {
Value int
Left *Node
Right *Node
Parent *Node
}
type BST struct {
Root *Node
}
func (bst *BST) Insert(value int) {
n := &Node{Value: value}
if bst.Root == nil {
bst.Root = n
return
}
current := bst.Root
for {
if value < current.Value {
if current.Left == nil {
current.Left = n
n.Parent = current
break
} else {
current = current.Left
}
} else {
if current.Right == nil {
current.Right = n
n.Parent = current
break
} else {
current = current.Right
}
}
}
}
func (bst *BST) InOrderTraversal(node *Node) {
if node != nil {
bst.InOrderTraversal(node.Left)
fmt.Print(node.Value, " ")
bst.InOrderTraversal(node.Right)
}
}
func (bst *BST) findPredecessor(node *Node) *Node {
if node.Left != nil {
return bst.findMax(node.Left)
}
current := node.Parent
for current != nil && node == current.Right {
node = current
current = current.Parent
}
return current
}
func (bst *BST) findMax(node *Node) *Node {
for node.Right != nil {
node = node.Right
}
return node
}
func (bst *BST) findSuccessor(node *Node) *Node {
if node.Right != nil {
return bst.findMin(node.Right)
}
current := node.Parent
for current != nil && node == current.Left {
node = current
current = current.Parent
}
return current
}
func (bst *BST) findMin(node *Node) *Node {
for node.Left != nil {
node = node.Left
}
return node
}
func main() {
bst := &BST{}
values := []int{50, 30, 20, 40, 70, 60, 80}
for _, value := range values {
bst.Insert(value)
}
bst.InOrderTraversal(bst.Root) // 验证 BST 是否正确
for node := bst.Root; node != nil; node = node.Right) {
predecessor := bst.findPredecessor(node)
successor := bst.findSuccessor(node)
fmt.Printf("Node: %v, Predecessor: %v, Successor: %v\n", node.Value, predecessor.Value, successor.Value)
if predecessor != nil && predecessor.Left != nil {
fmt.Println("Predecessor has a left child")
}
if successor != nil && successor.Right != nil {
fmt.Println("Successor has a right child")
}
}
}
这段代码首先创建了一个二叉搜索树,并插入了一些值。然后,它遍历树中的每个节点,并找到它们的前驱和后继。最后,它检查前驱是否具有左孩子,以及后继是否具有右孩子。如果满足这些条件,程序将输出相应的信息。
运行此程序将证明,如果一个节点具有两个子节点,那么它的前驱将没有左孩子,它的后继将没有右孩子。这是因为在二叉搜索树中,左子节点的值总是小于其父节点的值,而右子节点的值总是大于其父节点的值。因此,具有两个子节点的节点的前驱和后继将分别位于其左侧和右侧,这意味着它们不能具有左孩子(对于前驱)或右孩子(对于后继)。




文心一言 VS 讯飞星火 VS chatgpt (149)-- 算法导论12.2 4题的更多相关文章
- 【对比】文心一言对飚ChatGPT实操对比体验
前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...
- 【个人首测】百度文心一言 VS ChatGPT GPT-4
昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...
- 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入
"文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...
- 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果
百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...
- 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)
目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...
- 阿里版ChatGPT:通义千问pk文心一言
随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...
- 基于讯飞语音API应用开发之——离线词典构建
最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...
- android用讯飞实现TTS语音合成 实现中文版
Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...
- android讯飞语音开发常遇到的问题
场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...
- 初探机器学习之使用讯飞TTS服务实现在线语音合成
最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...
随机推荐
- HTML5CSS3提高
1 HTML5新特性 1.1 概述 HTML5 的新增特性主要是针对于以前的不足,增加了一些新的标签.新的表单和新的表单属性等. 这些新特性都有兼容性问题,基本是 IE9+ 以上版本的浏览器才支持,如 ...
- 日志监控平台搭建(Loki+promtail+grafana)
搭建Loki+promtail+grafana日志监控平台,可以直接在grafana的UI界面查看系统应用日志,使日志查看起来更方便.快捷. Loki:主服务器,负责存储日志和处理查询. Prom ...
- 《Kali渗透基础》09. 漏洞利用、后渗透
@ 目录 1:漏洞基本介绍 1.1:漏洞从哪里来 1.2:缓冲区溢出 1.3:如何发现漏洞 2:漏洞利用 2.1:EXP 选择与修改 2.2:避免有害的 EXP 3:后渗透阶段 3.1:Linux 上 ...
- 杰哥教你面试之一百问系列:java多线程
java多线程是java面试中的高频问题,如何才能在面试中脱颖而出呢?熟读这里的一百个java多线程面试问题即可. 1. 什么是线程?什么是进程? 回答: 线程是操作系统能够进行调度的最小执行单位,它 ...
- HDU 1171 0-1背包
最近感觉DP已经完全忘了..各种爆炸,打算好好复习一发,0-1背包开始 Big Event in HDU Problem Description Nowadays, we all know that ...
- 通过 Haproxy 实现 ss 负载均衡
介绍 缺点:所有的SS的加密方式和密码必须一致 介绍:HAProxy是一个使用C语言编写的自由及开放原始码软件,其提供高可用性.负载均衡,以及基于TCP和HTTP的应用程序代理. 安装Haproxy ...
- 在 Net7.0 环境下使用 RestSharp 发送 Http(FromBody和FromForm)请求
一.简介 最近,在做一个数据传输的服务,我在一个Worker Service里面需要访问 WebAPI 接口,并传输数据,也可以提交数据.由于第一次使用 RestSharp 发送请求,也遇到了很多问题 ...
- Python 有趣的模块之pynupt——通过pynput控制鼠标和键盘
写在前面 Python中有许多有趣和强大的模块,其中一个非常有趣的模块就是pynupt.pynupt是基于pynput模块的一个封装,用于控制鼠标和键盘.它可以实现自动化操作和游戏外挂等功能. 本文将 ...
- 解决软件安装无法自定义文件夹,自动安装在C盘 (Windows系统)
其实就是软链接的简单应用 1.软件已经自动安装 2.完全退出当前软件 3.通过软件图标的属性找到其实际的安装目录 4.进入该软件的安装目录 5.将该软件整个剪切(你没有看错)到指定文件夹(自定义的安装 ...
- Go语言系列——11-数组和切片、12-可变参数函数、13-Maps、14-字符串、15-指针、16-结构体、17-方法、18-接口(一)、19-接口(二)、19-自定义集合类型、20-并发入门
文章目录 11-数组和切片 数组 数组的声明 数组是值类型 数组的长度 使用 range 迭代数组 多维数组 切片 创建一个切片 切片的修改 切片的长度和容量 使用 make 创建一个切片 追加切片元 ...