大模型如火如荼的今天,不学点语言模型(LM)相关的技术实在是说不过去了。只不过由于过往项目用到LM较少,所以学习也主要停留在直面——动眼不动手的水平。Huggingface(HF)也是现在搞LM离不开的工具了。

出于项目需要,以及实践出真知的想法,在此记录一下第一次使用HF和微调ERNIE-gram的过程。

开始的开始

HF已经做的很好了。但是对于第一次上手实操LM的我来说,还是有点陌生的。上手时有几个问题是一直困扰我的:

  • HF上这么多模型,我该用哪一个?
  • 每个LM的主要作用是对文本进行Embedding,可我的任务是句子对相似性计算,这该怎么搞?
  • 我想在自己的数据上继续微调模型,该怎么做?

模型选择

简单描述一下我的任务:给定两个句子,判断两个句子的语义是否等价

从NLP的角度出发,这是一类STS(Semantic Textual Similarity)任务,本质是在比较两个文本的语义是否相似。通过检索,找到了一些相关的比赛,例如问题匹配的比赛和相关的模型,这里简单罗列一下:

通过以上资料,我大致确定了我要使用的模型——ERNIE-Gram[1]

如何使用选好的模型

首先,我找到了ERNIE-Gram的代码仓库[2]。代码里开源了模型的结构以及微调的代码,相对来说还是比较齐全的。但是有一个最不方便的地方——它是用飞浆写的(不是说飞浆不好,只是一直以来都用pytorch)。当然,很快我又找到了pytorch版的ERNIE-Gram,并且在HF找到了ERNIE-Gram模型。如果我知道怎么使用HF,那么或许我可以很快开始我的微调了,可惜没有如果。

那怎么使用HF上的模型,在自己的数据上进行微调呢?

找到了一篇比较合适的参考资料[3],其中介绍了如何在HF中调用ERNIE模型:

from transformers import BertTokenizer, ErnieModel
tokenizer = BertTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
model = ErnieModel.from_pretrained("nghuyong/ernie-1.0-base-zh")

根据这个,我发现通过HF使用某个模型的方法是从transformers库中导入对应的模型和工具即可。那么,我只需要找到对应的模型名和工具,然后以此作为基座,再添加一些可训练层就可以了?

分析dir(transformers)看看都有哪些和Ernie相关的类:

d = dir(transformers)
dd = [e for e in d if 'ernie' in e.lower()]
len(dd) # 26
print(dd)
# ====
['ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST', 'ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieConfig', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieMConfig', 'ErnieMForInformationExtraction', 'ErnieMForMultipleChoice', 'ErnieMForQuestionAnswering', 'ErnieMForSequenceClassification', 'ErnieMForTokenClassification', 'ErnieMModel', 'ErnieMPreTrainedModel', 'ErnieMTokenizer', 'ErnieModel', 'ErniePreTrainedModel', 'models.ernie', 'models.ernie_m']

为了更好了解每个类是干啥的,直接上transformers库来看各个类的介绍[4]。很快啊,我就发现ErnieForSequenceClassification很适合我的任务:

图中的GLUE(General Language Understanding Evaluation )[5]是一系列评测任务集合,显然,我的任务属于Similarity那一类。

很好,大致可以确定该怎么使用HF上的Ernie-Gram模型来完成我的任务了(可惜没有对应的示例)。

怎么微调

在实操之前,对于在预训练好的模型上进行微调,我的想法是:把预训练模型包起来,添加一个分类层,学习分类层的参数就可以了。

但是如果我选择了ErnieForSequenceClassification,通过源码可以发现该类其实是在ErnieModel的基础上添加了一个分类层,那我是否直接加载模型后,选择训练哪些参数就可以了呢?

其实,广义的来说,这等价于一个问题:在HuggingFace中如何微调模型?[6][7][8]

其实,微调和平常的模型训练没有太大区别,只不过需要加载预训练好的模型,以及利用现成的工具搭建训练流程,其中主要涉及到的就两点:模型的定义、训练流程的搭建。

模型定义

由于transformers中已经定义好了很多模型,如果某个完全符合要求,那就可以直接使用了。根据自己的需求,选择冻结和训练哪些参数就可以了。

但是有些时候只是用预训练的模型作为自己模型的一部分,这个时候就需要我们做一些额外的工作了——把预训练模型作为一块积木,搭建我们自己的模型。正如ErnieForSequenceClassification所做的一样。

训练流程

训练流程类似。可以重头自己搭建训练流程,或者使用transformes自带的Trainer接口。

这里直接参考HF的教程即可:Fine-tuning a model with the Trainer API自己搭建训练流程

参考


  1. ERNIE-Gram: Pre-Training with Explicitly N-Gram Masked Language Modeling for Natural Language Understanding, NAACL-HLT, 2021.

  2. ernie-gram.

  3. 试试在transformers中调用ERNIE.

  4. Hugging Face Ernie Doc``

  5. GLUE: A MULTI-TASK BENCHMARK AND ANALYSIS PLATFORM FOR NATURAL LANGUAGE UNDERSTANDING, ICLR, 2019.

  6. Hugging Face 的 Transformers 库快速入门(四):微调预训练模型.

  7. HuggingFace | 在HuggingFace中如何微调模型.

  8. FINE-TUNING A PRETRAINED MODEL.

Huggingface初上手即ERNIE-gram句子相似性实战的更多相关文章

  1. 利用Hugging Face中的模型进行句子相似性实践

      Hugging Face是什么?它作为一个GitHub史上增长最快的AI项目,创始人将它的成功归功于弥补了科学与生产之间的鸿沟.什么意思呢?因为现在很多AI研究者写了大量的论文和开源了大量的代码, ...

  2. 学习Keras:《Keras快速上手基于Python的深度学习实战》PDF代码+mobi

    有一定Python和TensorFlow基础的人看应该很容易,各领域的应用,但比较广泛,不深刻,讲硬件的部分可以作为入门人的参考. <Keras快速上手基于Python的深度学习实战>系统 ...

  3. 力扣每日一题2023.1.16---1813. 句子相似性 III

    一个句子是由一些单词与它们之间的单个空格组成,且句子的开头和结尾没有多余空格.比方说,"Hello World" ,"HELLO" ,"hello w ...

  4. Android 5.0 Lollipop初上手体验

    在等了好几天还没有等到OTA升级提示,前天笔者给Nexus4线刷入了官方提供的Lollipop的镜像,在试用了这两天之后,现在总结下自己感觉很惊艳的地方和一些地方的吐槽.(点击图片可以查看大图) 1. ...

  5. xss挖掘初上手

    本文主要总结了xss可能出现的场景.偏向于案例,最后分享一哈简单的绕过和比较好用的标签. 1.搜索框 首先看能否闭合前面的标签. 如输入111”><svg/onload=alert(1)& ...

  6. TensorFlow.org教程笔记(一)Tensorflow初上手

    本文同时也发布在自建博客地址. 本文翻译自www.tensorflow.org的英文教程. 本文档介绍了TensorFlow编程环境,并向您展示了如何使用Tensorflow解决鸢尾花分类问题. 先决 ...

  7. centos7初上手3-安装apache服务

    前两篇学习安装了mysql服务器,tomcat服务,这篇文章学习安装apache服务 1.执行yum install httpd,安装完成后查看httpd rpm -qa|grep httpd 2.新 ...

  8. centos7初上手2-安装tomcat服务

    上一篇文章说完安装mysql数据库,这篇文章来学习一下tomcat安装 1.先做准备工作,安装jdk,先看服务器上有没有安装相关java文件 下载好1.8版本的安装包,用xftp传到服务器上(根据个人 ...

  9. centos7初上手1-安装mysql数据库

    随着云服务器的普及,购入云服务器的门槛越来越低,对一个程序员来说,很多人会购买一款云服务器.以前买过两年windows服务器(没有什么实际用途,就是为了玩),最近有机会接触一下linux服务器,选择了 ...

  10. Linux初上手!

    虚拟机Virtual Box装的Kali Linux,是Debian的发行版本,安装过程不说了,不是硬盘安装也没什么说的,由于是新手所以只有两个分区,一个[/]和一个[swap] 装好之后是xwind ...

随机推荐

  1. Flask四剑客

    目录 Flask四剑客 Flask四剑客 ''' 响应字符串 响应html页面 跳转页面 返回json字符串 ''' from flask import Flask, render_template, ...

  2. 从零开始配置vim(21)——会话管理

    很多代码编辑器都有这么一个功能,重新进入编辑器之后能恢复上次打开的所有文件,窗口布局,有的甚至是上次设置的一些配置.那么vim是否也可以实现这样的功能呢?答案是肯定的.使用vim自带的会话管理和 vi ...

  3. 7.2 通过API创建新进程

    创建新的进程是Windows程序开发的重要部分,它可以用于实现许多功能,例如进程间通信.并行处理等.其中,常用的三种创建进程的方式分别是WinExec().ShellExecute()和CreateP ...

  4. Win32汇编:算数运算指令总结

    整理复习汇编语言的知识点,以前在学习<Intel汇编语言程序设计 - 第五版>时没有很认真的整理笔记,主要因为当时是以学习理解为目的没有整理的很详细,这次是我第三次阅读此书,每一次阅读都会 ...

  5. 集成Unity3D到iOS应用程序中

    如果想让原生平台(例如 Java/Android.Objective C/iOS 或 Windows Win32/UWP)包含 Unity 功能,可以通过Unity 生成UnityFramework静 ...

  6. PHP中文件锁

    PHP中文件锁 文件锁的用途: 若一个人在写入一个文件,另外一个人同时也打个了这个文件进行写入文件. 这情况下,如果遇到一定的碰撞概率的话,不知道到底谁的操作为准. 因此,这个时候我们引入锁机制. 若 ...

  7. Mygin之错误恢复Recover中间件

    本篇是mygin这个系列的最后一篇.如果想自己动手实现一个类似Gin的Web框架,建议从 mgin第一篇开始, 总代码行数有效行数只有600多行 github源码 mygin 目的 实现错误处理机制 ...

  8. idea启动springboot项目报错java.lang.ClassNotFoundException: com.gctl.bpm.GctlBpmApplication解决方案

    有时候父子工程改造springboot项目时会报错java.lang.ClassNotFoundException: com.gctl.bpm.GctlBpmApplication如下图所示 此时不要 ...

  9. C语言无锁高并发安全环形缓冲队列设计(一)

    1.前言 队列,常用数据结构之一,特点是先进先出. 队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限 ...

  10. Bellman-Ford算法实现带有负权边的单源最短路

    Bellman-Ford算法 对于Dijkstra算法,不妨给出这样一个例子 graph LR A((A)) -->|1| C((C)) A -->|2|D((D)) D -->|- ...