Nebula Graph 在大规模数据量级下的实践和定制化开发
本文作者系微信技术专家李本利
图数据在社交推荐、多跳实时计算、风控和安全等领域有可期待的前景。如何用图数据库高效存储和查询大规模异构图数据,是一个重大挑战。本文描述了开源分布式图数据库 Nebula Graph 实践中遇到的问题,并通过深度定制,实现:大数据集存储、小时级全量导入、多版本控制、秒级回滚、毫秒级访问等特性。
背景
为大众所熟知的图数据库大多在大数据集合上束手无策,如:Neo4j 的社区版本,采用 Cypher语言,由单机单副本提供服务,广泛应用于图谱领域。互联网公司只能在小数据集合下使用,还要解决 Neo4j 多副本一致性容灾的问题。JanusGraph 虽然通过外置元数据管理、kv 存储和索引的方式解决了大数据集合存储问题,但其存在广为诟病的性能问题。我们看到大部分图数据库在对比性能时都会提到和 JanusGraph 相比有几十倍以上的性能提升。
面临大数据量挑战的互联网公司,普遍走向了自研之路,为了贴合业务需求,仅支持有限的查询语义。国内主流互联网公司如何解决图数据库的挑战呢:
蚂蚁金服:GeaBase[1]
金融级图数据库,通过自定义类语言为业务方提供服务,全量计算下推,提供毫秒级延时。主要应用于以下场景:
- 金融风控场景:万亿级边资金网络,存储实时交易信息,实时欺诈检测。
- 推荐场景:股票证券推荐。
- 蚂蚁森林:万亿级的图存储能力,低延时强一致关系数据查询更新。
- GNN:用于小时级 GNN 训练。尝试动态图 GNN 在线推理。[7]
阿里巴巴:iGraph[2]
iGraph 是图索引及查询系统,存储用户的行为信息,是阿里数据中台四驾马车之一。通过 Gremlin 语言为业务方提供电商图谱实时查询。今日头条:ByteGraph[3]
ByteGraph 通过在 kv 上增加统一 cache 层,关系数据拆分为 B+ 树以应对高效的边访问和采样,类似 Facebook 的 TAO [6]。...
架构图
实践
从哪里开始呢?
我们选择从 Nebula Graph[4] 开始我们的图数据库之旅,其吸引我们的有以下几点:
- 数据集分片,每条边独立存储,超大规模数据集存储潜力。
- 定制强一致存储引擎,具有计算下推和 MMP 优化的潜力。
- 创始团队有丰富的图数据库经验,大数据集合下模型抽象思路经过验证。
实践中的问题
内存爆炸
本质上这是一个性能 VS 资源的问题,数据规模庞大的应用中,内存占用是一个不容忽视的问题。RocksDB 内存由三部分构成:block cache、index 和 bloom filter、iter pined block。
- block cache 优化:采用全局 LRU cache,控制机器上所有 rocksdb 实例的 cache 占用。
- bloom filter 优化:一条边被设计为一个 kv 存入到 rocksdb,如果全部 key 保存 bloom filter,每个 key 占用 10bit 空间,那么整个 filter 内存占用远超机器内存。观察到我们大部分的请求模式是获取某一个点的边列表,因此采用 prefix bloom filter;索引到点属性这一层实际上即可以对大多数请求进行加速。经过这个优化,单机 filter 所占用内存在 G 这个级别,大多数请求访问速度并未明显降低。
多版本控制
实践中,图数据需要进行快速回滚,定期全量导入,自动访问最新版本数据。我们把数据源大致可以分为两种类型:
- 周期性数据:比如,按天计算相似用户列表,导入后数据生效。
- 历史数据+实时数据:比如,历史数据按天刷新,和实时写入的数据进行合并成为全量数据。
如下是数据在 rocksdb 的存储模型:
vertex 存储格式
edge 存储格式
其中实时写入的数据 version 记录为时间戳。离线导入的数据 version 需要自己指定。我们将该字段和离线导入模块联合使用,用三个配置项进行版本控制:reserve_versions(需要保留的版本列表)、active_version(用户请求访问到的版本号)、max_version(保留某个版本之后数据,把历史数据和实时写入数据进行合并)。这样可以高效管理离线数据和在线数据,不再使用的数据在下一次 compaction 中被清除出磁盘。
通过这样的方式,业务代码可以无感更新数据版本,并做到了秒级回滚。
举例:
- 保留 3 个版本,激活其中一个版本:
alter edge friend reserve_versions = 1 2 3 active_version = 1
- 数据源为历史数据+实时导入数据。
alter edge friend max_version = 1592147484
快速批量导入
实践中导入大量数据是常规操作,如果不经任何优化,将需要导入的数据转为请求发给图数据库,不仅严重影响线上请求,而且大数据量导入耗时超过一天。对导入速度进行优化迫在眉睫。业界解决这个问题一般采用 SST Ingest 方式[5]。我们也是采用类似方式,通过例行调度 spark 任务,离线生成磁盘文件。然后数据节点拉取自己所需要的数据,并 ingest 到数据库中,之后进行版本切换控制请求访问最新版本数据。
整个过程导入速度快,约数个小时内完成全部过程。计算过程主要离线完成,对图数据库请求影响小。
shared nothing
这是近年来老生常谈的并发加速方式,然而要落地还是考验工程师的编程功底。meta cache 访问频繁,并用 shared_ptr 进行封装,也就成为了原子操作碰撞的高发地。为了能够实现真正的 shared nothing,我们将每一份 meta cache 拷贝为 thread local,具体解决方案请参考该 pull request [8]
小结
图数据库路阻且长,且行且珍惜。如果对于本文有什么疑问,可以在 GitHub[9] 上找找。
参考文献
- Fu, Zhisong, Zhengwei Wu, Houyi Li, Yize Li, Min Wu, Xiaojie Chen, Xiaomeng Ye, Benquan Yu, and Xi Hu. "GeaBase: a high-performance distributed graph database for industry-scale applications." International Journal of High Performance Computing and Networking 15, no. 1-2 (2019): 12-21.
- https://mp.weixin.qq.com/s?__biz=MzU0OTE4MzYzMw==&mid=2247489027&idx=3&sn=c149ce488cfc5231d4273d6da9dc8679&chksm=fbb29ffdccc516ebb8313b9202cfd78ea199da211c55b0a456a9e632a33e7d5b838d8da8bc6a&mpshare=1&scene=1&srcid=0614MWpeEsBc1RaBrl4htn3D&sharer_sharetime=1592106638907&sharer_shareid=a2497c4756f8bac1bcbef9edf86a86ac&rd2werd=1#wechat_redirect
- https://zhuanlan.zhihu.com/p/109401046
- https://github.com/vesoft-inc/nebula
- https://www.infoq.cn/article/SPYkxplsq7f36L1QZIY7
- Bronson, Nathan, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris et al. "{TAO}: Facebook’s distributed data store for the social graph." In Presented as part of the 2013 {USENIX} Annual Technical Conference ({USENIX}{ATC} 13), pp. 49-60. 2013.
- http://blog.itpub.net/69904796/viewspace-2653498/
- https://github.com/vesoft-inc/nebula/pull/2165
- https://github.com/xuguruogu/nebula
- 腾讯高性能分布式图计算框架柏拉图 https://github.com/Tencent/plato
加入 Nebula Graph 交流群,请联系 Nebula Graph 官方小助手微信号:NebulaGraphbot
Nebula Graph 在大规模数据量级下的实践和定制化开发的更多相关文章
- Nebula Graph 在网易游戏业务中的实践
本文首发于 Nebula Graph Community 公众号 当游戏上知识图谱,网易游戏是如何应对大规模图数据的管理问题,Nebula Graph 又是如何帮助网易游戏落地游戏内复杂的图的业务呢? ...
- Nebula Graph 在微众银行数据治理业务的实践
本文为微众银行大数据平台:周可在 nMeetup 深圳场的演讲这里文字稿,演讲视频参见:B站 自我介绍下,我是微众银行大数据平台的工程师:周可,今天给大家分享一下 Nebula Graph 在微众银行 ...
- 使用图数据库 Nebula Graph 数据导入快速体验知识图谱 OwnThink
前言 本文由 Nebula Graph 实习生@王杰贡献. 最近 @Yener 开源了史上最大规模的中文知识图谱--OwnThink(链接:https://github.com/ownthink/Kn ...
- 使用图数据库 Nebula Graph 数据导入快速体验知识图谱
本文由 Nebula Graph 实习生@王杰贡献. 最近 @Yener 开源了史上最大规模的中文知识图谱——OwnThink(链接:https://github.com/ownthink/Knowl ...
- Mysql百万数据量级数据快速导入Redis
前言 随着系统的运行,数据量变得越来越大,单纯的将数据存储在mysql中,已然不能满足查询要求了,此时我们引入Redis作为查询的缓存层,将业务中的热数据保存到Redis,扩展传统关系型数据库的服务能 ...
- Nebula Graph 在企查查的应用
本文首发于 Nebula Graph Community 公众号 背景 企查查是企查查科技有限公司旗下的一款企业信用查询工具,旨在为用户提供快速查询企业工商信息.法院判决信息.关联企业信息.法律诉讼. ...
- 全方位讲解 Nebula Graph 索引原理和使用
本文首发于 Nebula Graph Community 公众号 index not found?找不到索引?为什么我要创建 Nebula Graph 索引?什么时候要用到 Nebula Graph ...
- 图数据库|基于 Nebula Graph 的 BetweennessCentrality 算法
本文首发于 Nebula Graph Community 公众号 在图论中,介数(Betweenness)反应节点在整个网络中的作用和影响力.而本文主要介绍如何基于 Nebula Graph 图数据 ...
- JuiceFS 在 Elasticsearch/ClickHouse 温冷数据存储中的实践
企业数据越存越多,存储容量与查询性能.以及存储成本之间的矛盾对于技术团队来说是个普遍难题.这个难题在 Elasticsearch 与 ClickHouse 这两个场景中尤为突出,为了应对不同热度数据对 ...
- 图数据库对比:Neo4j vs Nebula Graph vs HugeGraph
本文系腾讯云安全团队李航宇.邓昶博撰写 图数据库在挖掘黑灰团伙以及建立安全知识图谱等安全领域有着天然的优势.为了能更好的服务业务,选择一款高效并且贴合业务发展的图数据库就变得尤为关键.本文挑选了几款业 ...
随机推荐
- Fabric区块链浏览器(3)
本文是区块链浏览器系列的第五篇,项目完整代码在这里. 在上一篇文章中给浏览器增加了简单的用户认证,至此浏览器的基本功能就已经大致完成了. 在这片文章中,我将使用kratos对区块链浏览器器进行重构,使 ...
- vs版本与version(内部版本号)的关系表table
为什么要查vs版本与内部verion的对应关系? 因为c++的项目需要对应的vs版本,给大型的c++项目升级vs版本是个耗时的工程,所以一般情况下开发者都会安装多个版本的vs. 对于sln文件,以文本 ...
- 加快ios的出包速度
在导出ipa时,通过这几种方法,可以更快地导出ipa来进行测试 不勾选bitcode 在导出ipa时,不勾选bitcode,这样会加快出包的速度,但导出来的ipa会大一些,关于bitcode可查看:& ...
- 深度学习应用篇-元学习[16]:基于模型的元学习-Learning to Learn优化策略、Meta-Learner LSTM
深度学习应用篇-元学习[16]:基于模型的元学习-Learning to Learn优化策略.Meta-Learner LSTM 1.Learning to Learn Learning to Lea ...
- 5.11 汇编语言:仿写IF条件语句
条件语句,也称为IF-ELSE语句,是计算机编程中的一种基本控制结构.它允许程序根据条件的真假来执行不同的代码块.条件语句在处理决策和分支逻辑时非常有用.一般来说,条件语句由IF关键字.一个条件表达式 ...
- C/C++ 实现正反向端口映射
通常服务器是放在内网中,内部局域网中,并且分配了私有IP地址,而如果想要在外部直接访问内部服务器则需要端口映射,端口映射也叫做端口转发,或者叫做虚拟服务器,在渗透时当我们拿到目标机器权限以后,目标机器 ...
- C# 中类与继承等概念
C#是一种现代的.面向对象的编程语言,其中类和继承是面向对象编程语言中非常重要的概念,类和继承是C#中面向对象编程的基本概念,可以用于创建复杂的应用程序和模块,而多态和接口可以使程序更加灵活和可扩展. ...
- C/C++ Qt 信号自定义槽函数
Qt中实现自定义信号与槽函数,信号用于发送并触发槽函数,槽函数则是具体的功能实现,如下我们以老师学生为例子简单学习一下信号与槽函数的使用方法. 使用无参数信号与槽: 首先定义一个teacher类,该类 ...
- centos离线安装chrony
环境 CentOS Linux release 7.9.2009 (Core) 工具 chrony-2.2.1.tar.gz 下载地址:https://download.tuxfamily.org/c ...
- Python中的UnboundLocalError是什么错误?如何解决?
在一个月黑风高的夜晚,我们满心欢喜地写出以下代码: money = 10000 # 当前的财产,单位为元 def add_money(value): money += value print('当 ...