PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。

在数字安全领域,加密算法扮演着至关重要的角色。它们确保了信息的机密性、完整性和不可否认性。RSA算法和椭圆曲线算法(ECC)是当前最广泛使用的两种非对称加密技术。本文将深入探讨这两种算法的加密过程。

RSA算法

算法概述

RSA算法是一种基于大整数因数分解难题的非对称加密算法。由Ron Rivest、Adi Shamir 和 Leonard Adleman在1977年提出。RSA算法的安全性依赖于分解一个大整数的难度,该整数是两个大质数的乘积。

加密过程

  1. 密钥生成

    • 随机选择两个大质数 ( p ) 和 ( q )。
    • 计算 ( n = p \times q )。
    • 计算欧拉函数 ( \phi(n) = (p-1) \times (q-1) )。
    • 选择一个小于 ( \phi(n) ) 的整数 ( e ),通常 ( e ) 为65537,因为它具有一些有利的数学性质。
    • 计算 ( d ),使得 ( d \times e \equiv 1 \mod \phi(n) ),即 ( d ) 是 ( e ) 关于模 ( \phi(n) ) 的乘法逆元。
    • 公钥为 ( (n, e) ),私钥为 ( (n, d) )。
  2. 加密

    • 设明文消息为 ( M ),且 ( 0 \leq M < n )。
    • 计算密文 ( C ) 为 ( C = M^e \mod n )。
  3. 解密

    • 使用私钥解密密文 ( C ) 得到明文 ( M )。
    • 计算 ( M = C^d \mod n )。
  • 质数:一个大于1的自然数,除了1和它本身外,不能被其他自然数整除的数。
  • 欧拉函数:对于正整数 ( n ),欧拉函数 ( \phi(n) ) 表示小于或等于 ( n ) 且与 ( n ) 互质的正整数的数量。

椭圆曲线算法(ECC)

算法概述

椭圆曲线密码学是一种基于椭圆曲线数学的公钥加密技术。它提供了相同密钥长度下比RSA更高的安全性。ECC的安全性基于椭圆曲线离散对数问题(ECDLP)的难度。

加密过程

  1. 密钥生成

    • 选择一个椭圆曲线方程 ( y^2 = x^3 + ax + b )。
    • 选择一个基点 ( G ),它是一个在椭圆曲线上的点,且满足群的性质。
    • 随机选择一个私钥 ( d )。
    • 计算公钥 ( Q = dG ),即 ( d ) 倍的基点 ( G )。
    • 公钥为 ( (G, Q) ),私钥为 ( d )。
  2. 加密

    • 设明文消息为 ( M )。
    • 选择一个随机数 ( k )。
    • 计算 ( C_1 = kG )。
    • 计算 ( C_2 = M + kQ )。
    • 密文为 ( (C_1, C_2) )。
  3. 解密

    • 给定密文 ( (C_1, C_2) )。
    • 计算 ( k = (C_1 - Q) \times d^{-1} \mod n )。
    • 计算 ( M = C_2 - kG )。
  • 椭圆曲线:一个由 ( y^2 = x^3 + ax + b ) 定义的平面上的点集,加上一个额外的点“无穷远点”。
  • 离散对数问题:在有限域上,给定一个基元素 ( g ) 和它的幂 ( g^k ),求整数 ( k ) 是非常困难的。

结论

RSA和椭圆曲线算法都是现代密码学中非常重要的加密技术。RSA算法因其历史悠久和广泛的应用而广为人知,而椭圆曲线算法则因其在相同安全级别的更高效率而受到关注。了解这些算法的工作原理对于保护数据安全至关重要。

PrimiHub一款由密码学专家团队打造的开源隐私计算平台,专注于分享数据安全、密码学、联邦学习、同态加密等隐私计算领域的技术和内容。

密码学中的RSA算法与椭圆曲线算法的更多相关文章

  1. [区块链] 密码学中Hash算法(基础)

    在介绍Hash算法之前,先给大家来个数据结构中对hash表(散列表)的简单解释,然后我再逐步深入,讲解一下hash算法. 一.Hash原理——基础篇 1.1 概念 哈希表就是一种以 键-值(key-i ...

  2. C# 中使用 RSA加解密算法

    一.什么是RSA RSA公开密钥密码体制.所谓的公开密钥密码体制就是使用不同的加密密钥与解密密钥,是一种“由已知加密密钥推导出解密密钥在计算上是不可行的”密码体制. 在公开密钥密码体制中,加密密钥(即 ...

  3. <密码学入门>关于RSA算法的加密解密及代码实现

    RSA算法 是一种公钥加密算法,RSA算法相比别的算法思路非常清晰,但是想要破解的难度非常大.RSA算法基于一个非常简单的数论事实:两个素数相乘得到一个大数很容易,但是由一个大数分解为两个素数相乘却非 ...

  4. 聊聊密码学中的DES算法

    用心分享,共同成长 没有什么比你每天进步一点点更实在了 本文已经收录至我的github,欢迎大家踊跃star 和 issues. https://github.com/midou-tech/artic ...

  5. Java中使用RSA算法加密

    Java中使用RSA算法加密 概述 RSA加密算法是一种非对称加密算法 RSA加密的方式 使用公钥加密的数据,利用私钥进行解密 使用私钥加密的数据,利用公钥进行解密 RSA是一对密钥.分别是公钥和私钥 ...

  6. AES算法,DES算法,RSA算法JAVA实现

    1     AES算法 1.1    算法描述 1.1.1      设计思想 Rijndael密码的设计力求满足以下3条标准: ① 抵抗所有已知的攻击. ② 在多个平台上速度快,编码紧凑. ③ 设计 ...

  7. 谈谈PBOC3.0中使用的国密SM2算法

    转载请注明出处 http://blog.csdn.net/pony_maggie/article/details/39780825 作者:小马 一 知识准备 SM2是国密局推出的一种他们自己说具有自主 ...

  8. [转帖]RSA算法与DSA算法的区别

    RSA算法与DSA算法的区别 https://cloud.tencent.com/developer/news/254061 文章来源:企鹅号 - SuperFullStack 本文译自:StackE ...

  9. 基于OpenSLL的RSA加密应用(非算法)

    基于OpenSLL的RSA加密应用(非算法) iOS开发中的小伙伴应该是经常用der和p12进行加密解密,而且在通常加密不止一种加密算法,还可以加点儿盐吧~本文章主要阐述的是在iOS中基于openSL ...

  10. 浅析nodeJS中的Crypto模块,包括hash算法,HMAC算法,加密算法知识,SSL协议

    node.js的crypto在0.8版本,这个模块的主要功能是加密解密. node利用 OpenSSL库(https://www.openssl.org/source/)来实现它的加密技术, 这是因为 ...

随机推荐

  1. C语言趣味编程之三天打鱼两天晒网

    include <stdio.h> typedef struct date {//定义一个日期结构体date,三个成员变量year\month\day,使得年月日作为一个整体,相互联系. ...

  2. XAF Blazor FilterPanel 布局样式

    从上一篇关于ListView布局样式的文章中,我们知道XAFBlazor是移动优先的,如果想在PC端有更好的用户体验,我们需要对布局样式进行修改.这篇介绍在之前文章中提到的FilterPanel,它的 ...

  3. 记spring boot启动出现Unable to start ServletWebServerApplicationContext due to missing ServletWebServerFactory bean.问题处理

    今天拉下了一个新的springboot工程,启动时出现了Unable to start web server; nested exception is org.springframework.cont ...

  4. AOP+自定义注解实现权限校验-2022新项目

    一.业务场景 当前本人参与开发的是一个业务中台系统,所谓的中台简单的理解就是把相同的功能给抽取出来.比如系统A.B.C.D都需要进行用户登录操作,那么可以把用户信息管理这一块抽取出来为一个独立的系统E ...

  5. electron-vite 可用,本机软件开发环境搭建

    electron-vite 可用,本机软件开发环境搭建 https://electron-vite.github.io/

  6. 摆脱鼠标操作 vscode-vim-use-readme.md

    vscode-vim 学习笔记 梳理下自己定义的快捷键 Normal模式返回 ESC capsLock 双击shift ctrl+[ jj ctrl+c (这个键比较特殊 用习惯y的话,考虑这个) 一 ...

  7. vite + vue3 打包后 本地直接运行 type="module" crossorigin 替换为defer - 多个vue文件就不好使了

    vite + vue3 打包后 本地直接运行 type="module" crossorigin 替换为defer 需求: 想打包后,双击运行,不启动服务 修改 vite.conf ...

  8. Centos安装常见软件

    一.vscode sudo rpm --import https://packages.microsoft.com/keys/microsoft.asc sudo sh -c 'echo -e &qu ...

  9. day08-Java数组

    Java数组 1.数组概述 数组的定义: 数组是相同类型数据的有序集合 数组描述的是相同类型的若干个数据,按照一定的先后次序排列组合而成 其中每一个数据称作一个数组元素,每个数组元素可以通过一个下标来 ...

  10. windows下删除文件时提示“操作无法完成 因为文件已在。。。”解决方案

    解决方案:利用"资源监视器",如上图: 具体步骤: win+r,输入perfmon打开资源监视器 或者 右键--Windows 7任务栏--启动任务管理器--性能--资源监视器-- ...