初探: 通过pyo3用rust为python写扩展加速
众所周知,python性能比较差,尤其在计算密集型的任务当中,所以机器学习领域的算法开发,大多是将python做胶水来用,他们会在项目中写大量的C/C++代码然后编译为so动态文件供python加载使用。那么时至今日,对于不想学习c/c++的朋友们,rust可以是一个不错的替代品,它有着现代化语言的设计和并肩c/c++语言的运行效率。
本文简单介绍使用rust为python计算性质的代码做一个优化,使用pyo3库为python写一个扩展供其调用,咱们下面开始,来看看具体的过程和效率的提升。(PS:本文只是抛砖引玉,初级教程)
我的台式机环境:
设备名称 DESKTOP
处理器 12th Gen Intel(R) Core(TM) i7-12700 2.10 GHz
机带 RAM 32.0 GB (31.8 GB 可用)
系统类型 64 位操作系统, 基于 x64 的处理器
1. python代码
首先给出python代码,这是一个求积分的公式:
import time
def integrate_f(a, b, N):
s = 0
dx = (b - a) / N
for i in range(N):
s += 2.71828182846 ** (-((a + i * dx) ** 2))
return s * dx
s = time.time()
print(integrate_f(1.0, 100.0, 200000000))
print("Elapsed: {} s".format(time.time() - s))
执行这段代码花费了: Elapsed: 32.59504199028015 s
2. rust
use std::time::Instant;
fn main() {
let now = Instant::now();
let result = integrate_f(1.0, 100.0, 200000000);
println!("{}", result);
println!("Elapsed: {:.2} s", now.elapsed().as_secs_f32())
}
fn integrate_f(a: f64, b: f64, n: i32) -> f64 {
let mut s: f64 = 0.0;
let dx: f64 = (b - a) / (n as f64);
for i in 0..n {
let mut _tmp: f64 = (a + i as f64 * dx).powf(2.0);
s += (2.71828182846_f64).powf(-_tmp);
}
return s * dx;
}
执行这段代码花费了: Elapsed: 10.80 s
3. 通过pyo3写扩展
首先创建一个项目,并安装 maturin 库:
# (replace demo with the desired package name)
$ mkdir demo
$ cd demo
$ pip install maturin
然后初始化一个pyo3项目:
$ maturin init
What kind of bindings to use? · pyo3
Done! New project created demo
整体项目结构如下:
Cargo.toml中的一些字段含义:https://doc.rust-lang.org/cargo/reference/manifest.html
.
├── Cargo.toml // rust包管理文件,会在[lib]中声明目标扩展包的名称
├── src // rust源文件目录, 你的扩展文件就写在这里,这个目录是maturin初始化的时候自动创建
│ └── lib.rs // 扩展文件
├── pyproject.toml // python包管理文件,里面有python的包名字定义
├── .gitignore
├── Cargo.lock
└── demo // 我们的目标模块名称,需手动创建
├── main.py // 用来测试的文件
└── demo.cp312-win_amd64.pyd // 编译生成的动态链接库文件,供import给python使用
在src/lib.rs 下写入:
use pyo3::prelude::*;
/// Caculate the integrate.
#[pyfunction]
fn integrate_f(a: f64, b: f64, n: i32) -> f64 {
let mut s: f64 = 0.0;
let dx: f64 = (b - a) / (n as f64);
for i in 0..n {
let mut _tmp: f64 = (a + i as f64 * dx).powf(2.0);
s += (2.71828182846_f64).powf(-_tmp);
}
return s * dx;
}
/// A Python module implemented in Rust. The name of this function must match
/// the `lib.name` setting in the `Cargo.toml`, else Python will not be able to
/// import the module.
#[pymodule]
fn demo(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
m.add_function(wrap_pyfunction!(integrate_f, m)?)?;
Ok(())
}
然后我们通过两种途径来使用它:
3.1 将扩展安装为python包
$ maturin develop
这个命令会将rust代码转为python的包,并安装在当前python环境内。通过 pip list 就能看到。
3.2 编译成动态文件从python加载
$ maturin develop --skip-install
--skip-install 命令会产生一个 pyd 文件而不是将其安装为python的包 - demo.cp312-win_amd64.pyd 文件在当前目录下,然后python可以直接导入使用。
另外还有一个指令替换
--skip-install为--release会生成一个xxxx.whl文件,也就是Python pip安装的包源文件。
首先我们在rust项目下,与 Cargo.toml 同级目录下,创建一个 demo 目录,然后我们写一个python文件 demo/main.py,下面是扩展的执行效果:
import time
import demo
s = time.time()
print(demo.integrate_f(1.0, 100.0, 200000000))
print("Elapsed: {} s".format(time.time() - s))
花费时间为:Elapsed: 10.908721685409546 s
可以看到python的执行时间是rust和rust扩展的3倍时长,单进程看着好像不太大是吧,下面还有并行版本。
4 并行加速
4.1 python多进程效果
Python多进程很神奇,你写的不好的话,他比单进程下还要慢。
import math
import os
import time
from functools import partial
from multiprocessing import Pool
def sum_s(i: int, dx: float, a: int):
return math.e ** (-((a + i * dx) ** 2))
def integrate_f_parallel(a, b, N):
s: float = 0.0
dx = (b - a) / N
sum_s_patrial = partial(sum_s, dx=dx, a=a)
with Pool(processes=os.cpu_count()) as pool:
tasks = pool.map_async(sum_s_patrial, range(N), chunksize=20000)
for t in tasks.get():
s += t
return s * dx
if __name__ == "__main__":
s = time.time()
print(integrate_f_parallel(1.0, 100.0, 200000000))
print("Elapsed: {} s".format(time.time() - s))
花费时间: Elapsed: 18.86696743965149 s,比单进程下时间少了不到一半。
4.2 rust多线程加速给python使用
如果我们使用rust的并行库,将rust进一步加速,速度效果更明显:
将上面的 integrate_f 替换为下面的多线程版本:
use pyo3::prelude::*;
use rayon::prelude::*;
#[pyfunction]
fn integrate_f_parallel(a: f64, b: f64, n: i32) -> f64 {
let dx: f64 = (b - a) / (n as f64);
let s: f64 = (0..n)
.into_par_iter()
.map(|i| {
let x = a + i as f64 * dx;
(2.71828182846_f64).powf(-(x.powf(2.0)))
})
.sum();
return s * dx;
}
/// A Python module implemented in Rust. The name of this function must match
/// the `lib.name` setting in the `Cargo.toml`, else Python will not be able to
/// import the module.
#[pymodule]
fn demo(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
m.add_function(wrap_pyfunction!(integrate_f_parallel, m)?)?;
Ok(())
}
执行上一个标题3.2的步骤,然后在引入python使用:
import time
import demo
s = time.time()
print(demo.integrate_f_parallel(1.0, 100.0, 200000000))
print("Elapsed: {} s".format(time.time() - s))
花费时间为:Elapsed: 0.9684994220733643 s。这比原先的单线程rust版本又快了10倍。但是差不多是python并行版本的18倍左右,是python单进程版本的32倍左右。如果我们将一些关键的性能通过rust重写,可以节省的时间成本是十分可观的。
总体来看,整体的使用过程相当简洁方便,难点就是rust的学习曲线高,使用起来需要花费精力,但是还是可以慢慢尝试去使用它优化已有的项目性能,哪怕只是一个功能函数,熟能生巧,一切慢慢来。
以上数据比较仅供参考,不同机器可能差异也不同。
- 参考文章:
初探: 通过pyo3用rust为python写扩展加速的更多相关文章
- Python之美[从菜鸟到高手]--一步一步动手给Python写扩展(异常处理和引用计数)
我们将继续一步一步动手给Python写扩展,通过上一篇我们学习了如何写扩展,本篇将介绍一些高级话题,如异常,引用计数问题等.强烈建议先看上一篇,Python之美[从菜鸟到高手]--一步一步动手给Pyt ...
- Python写各大聊天系统的屏蔽脏话功能原理
Python写各大聊天系统的屏蔽脏话功能原理 突然想到一个视频里面弹幕被和谐的一满屏的*号觉得很有趣,然后就想用python来试试写写看,结果还真玩出了点效果,思路是首先你得有一个脏话存放的仓库好到时 ...
- python写红包的原理流程包含random,lambda其中的使用和见简单介绍
Python写红包的原理流程 首先来说说要用到的知识点,第一个要说的是扩展包random,random模块一般用来生成一个随机数 今天要用到ramdom中unifrom的方法用于生成一个指定范围的随机 ...
- Python写地铁的到站的原理简易版
Python地铁的到站流程及原理(个人理解) 今天坐地铁看着站牌就莫名的想如果用Python写其工作原理 是不是很简单就小试牛刀了下大佬们勿喷纯属小弟个人理解 首先来看看地铁上显示的站牌如下: 就想这 ...
- 用Python写一个简单的Web框架
一.概述 二.从demo_app开始 三.WSGI中的application 四.区分URL 五.重构 1.正则匹配URL 2.DRY 3.抽象出框架 六.参考 一.概述 在Python中,WSGI( ...
- 读书笔记汇总 --- 用Python写网络爬虫
本系列记录并分享:学习利用Python写网络爬虫的过程. 书目信息 Link 书名: 用Python写网络爬虫 作者: [澳]理查德 劳森(Richard Lawson) 原版名称: web scra ...
- Python写UTF8文件,UE、记事本打开依然乱码的问题
Python写UTF8文件,UE.记事本打开依然乱码的问题 Leave a reply 现象:使用codecs打开文件,写入UTF-8文本,正常无错误.用vim打开正常,但记事本.UE等打开乱码. 原 ...
- python 写的http后台弱口令爆破工具
今天来弄一个后台破解的Python小程序,哈哈,直接上代码吧,都有注释~~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ...
- python写xml文件
为了便于后续的读取处理,这里就将信息保存在xml文件中,想到得到的文件如下: 1 <?xml version="1.0" encoding="utf-8" ...
- 教你用python写:HDU刷题神器
声明:本文以学习为目的,请不要影响他人正常判题 HDU刷题神器,早已被前辈们做出来了,不过没有见过用python写的.大一的时候见识了学长写这个,当时还是一脸懵逼,只知道这玩意儿好屌-.时隔一年,决定 ...
随机推荐
- SQL改写案例4(开窗函数取中位数案例)
周总找我问个报表SQL实现逻辑的案例,废话不说给他看看. 原SQL: SELECT d.tname 姓名, d.spname 岗位, d.sum_cnt 报单单量, d.min_cnt 放款单量, d ...
- Linux Media 子系统链路分析
一.概述 Media 子系统是一个用于处理多媒体设备的框架,它提供了一组 API 和驱动程序,用于管理和控制视频.音频和其他多媒体设备.而 V4L2 是 media 子系统的一部分,用于处理视频相关的 ...
- 在路上---学习篇(一)Python 数据结构和算法 (5)二分查找、二叉树遍历
独白: 利用算法进行查找指定元素,最近学习二分查找和二叉树遍历.二分查找前提是在有序中进行查找,二叉树引入了树的概念.树的概念其中有许多小知识点,也是一种新的数据结构.还是之前的感悟,需了解其本质才会 ...
- C/C++ Zlib库封装MyZip压缩类
Zlib是一个开源的数据压缩库,提供了一种通用的数据压缩和解压缩算法.它最初由Jean-Loup Gailly和Mark Adler开发,旨在成为一个高效.轻量级的压缩库,其被广泛应用于许多领域,包括 ...
- ClickHouse(16)ClickHouse日志引擎Log详细解析
日志引擎系列 这些引擎是为了需要写入许多小数据量(少于一百万行)的表的场景而开发的. 这系列的引擎有: StripeLog Log TinyLog 共同属性 引擎: 数据存储在磁盘上. 写入时将数据追 ...
- Android12版本闹钟服务崩溃问题
原文地址: Android12版本闹钟服务崩溃问题 - Stars-One的杂货小窝 公司项目app线上出现的崩溃记录问题,崩溃日志如下所示: Caused by java.lang.Security ...
- [GDOIpj221D] 小学生计数题
第四题 小学生计数题 提交文件: counting.cpp 输入文件: counting.in 输出文件: counting.out 时间空间限制: 1 秒, 256 MB 作为 GDOI 的组题人, ...
- 【Linux API 揭秘】container_of函数详解
[Linux API 揭秘]container_of函数详解 Linux Version:6.6 Author:Donge Github:linux-api-insides 1.container_o ...
- Linux磁盘专题-linux文件系统详解
这可是我几年前的杰作笔记呀.....当初手写计算都会,现在忘光光.... 物理硬盘Block的概念和作用 硬盘底层一次IO就是读.写一次扇区,一个扇区默认是512Byte. 读写大量文件如果以扇区为单 ...
- Python趣味入门12:初遇类与实例
小牛叔用轻松有趣的故事,带你进入Python的编程世界. 1.类 一提到类大神们就经常说封装.说白了,封装即把围绕同一个对象相同的代码.数据整合在一起.比如在某段游戏代码中(比如熊猫厨房),有一个&q ...