首先我们应该知道np.sum是用C语言写的矢量计算,应用场景为规模较大的numpy数组求和。本文要说的就是numpy.sum是不是对规模较小的numpy数组求和也同样会有不错的性能?

代码:

import numpy as np
import time data_0 = []
data_1 = []
for _ in range(1000000):
tmp = np.random.randint(100, size=(6,))
data_0.append(tmp)
data_1.append(tmp.tolist()) a_time = time.time()
for d in data_0:
x=np.sum(d)
b_time = time.time()
print(b_time-a_time) a_time = time.time()
for a,b,c,d,e,f in data_1:
x=a+b+c+d+e+f
b_time = time.time()
print(b_time-a_time)

从上面的代码中我们可以知道,第一个运算是使用numpy.sum对长度为6的numpy数组求和;第二个运算是使用python原生的加和运算。

运算结果:

结果分析:

从上面的结果可以看到,在对小规模数组求和时,numpy.sum求和计算的性能是没有python原生计算性能高的,而且这个差距还很大,在上面的结果中相差了10多倍。由此我们可以知道,在对小规模数组求和时,使用python原生加和运算的性能要优于numpy.sum的。

========================================

numpy.sum的性能只有对较大规模数组求和才有很好体现,为此我们再加一个测试,对数组长度为10000的数组求和。

代码:

import numpy as np
import time data_0 = []
data_1 = []
for _ in range(100000):
tmp = np.random.randint(100, size=(10000,))
data_0.append(tmp)
data_1.append(tmp.tolist()) a_time = time.time()
for d in data_0:
x=np.sum(d)
b_time = time.time()
print(b_time-a_time) a_time = time.time()
for data in data_1:
s = 0
for d in data:
s += d
b_time = time.time()
print(b_time-a_time)

运行结果:

结果分析:

通过上面的测试,可以知道在对规模为10000的数组求和时,numpy.sum的性能是python原生的63倍;而在上面对长度为6的数组求和时,python原生的性能是numpy.sum的20倍。这个结果更加证明了numpy.sum只适合对大规模数组求和的情况,否则它的性能会原差于python原生。

=======================================

在python中numpy.sum的性能真的好吗的更多相关文章

  1. python中numpy.sum()函数

    讲解清晰,转载自:https://blog.csdn.net/rifengxxc/article/details/75008427 众所周知,sum不传参的时候,是所有元素的总和.这里就不说了. 1 ...

  2. Python中Numpy ndarray的使用

    本文主讲Python中Numpy数组的类型.全0全1数组的生成.随机数组.数组操作.矩阵的简单运算.矩阵的数学运算. 尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更方便. 定义数 ...

  3. 基于Python中numpy数组的合并实例讲解

    基于Python中numpy数组的合并实例讲解 下面小编就为大家分享一篇基于Python中numpy数组的合并实例讲解,具有很好的参考价值,希望对大家有所帮助.一起跟随小编过来看看吧 Python中n ...

  4. python中numpy矩阵运算操作大全(非常全)!

    python中numpy矩阵运算操作大全(非常全) //2019.07.10晚python矩阵运算大全1.矩阵的输出形式:对于任何一个矩阵,python输出的模板是:import numpy as n ...

  5. Python中Numpy及Matplotlib使用

    Python中Numpy及Matplotlib使用 1. Jupyter Notebooks 作为小白,我现在使用的python编辑器是Jupyter Notebook,非常的好用,推荐!!! 你可以 ...

  6. python 中的sum( )函数 与 numpy中的 sum( )的区别

    一. python sum函数 描述: sum() 对序列进行求和 用法: sum(iterable[, start]) iterable:可迭代对象,例如,列表,元组,集合. start:指定相加的 ...

  7. 在PYTHON中使用StringIO的性能提升实测(更新list-join对比)

    刚开始学习PYTHON,感觉到这个语言真的是很好用,可以快速完成功能实现. 最近试着用它完成工作中的一个任务:在Linux服务器中完成对.xml.gz文件的解析,生成.csv文件,以供SqlServe ...

  8. Python中NumPy基础使用

    Python发展至今,已经有越来越多的人使用python进行科学技术,NumPY是python中的一款高性能科学计算和数据分析的基础包. ndarray ndarray(以下简称数组)是numpy的数 ...

  9. 【转】python 中NumPy和Pandas工具包中的函数使用笔记(方便自己查找)

    二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准 ...

  10. python 中NumPy和Pandas工具包中的函数使用笔记(方便自己查找)

    二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准 ...

随机推荐

  1. LLM应用实战:当图谱问答(KBQA)集成大模型(三)

    1. 背景 最近比较忙(也有点茫),本qiang~想切入多模态大模型领域,所以一直在潜心研读中... 本次的更新内容主要是响应图谱问答集成LLM项目中反馈问题的优化总结,对KBQA集成LLM不熟悉的客 ...

  2. Kubernetes(K8s)之Pod

    Pod介绍 Pod是K8s的最小调度单位 内部是一组Container容器,根容器Pause和其他业务容器 拥有唯一Pod IP 小贴士: 在生产环境中,极少单独Pod的情况 一般都是使用Deploy ...

  3. BigCodeBench: 继 HumanEval 之后的新一代代码生成测试基准

    HumanEval 是一个用于评估大型语言模型 (LLM) 在代码生成任务中的参考基准,因为它使得对紧凑的函数级代码片段的评估变得容易.然而,关于其在评估 LLM 编程能力方面的有效性越来越多的担忧, ...

  4. 使用EF 连接 数据库 SQLserver、MySql 实现 CodeFirst

    1.新建项目,下载Nuget安装包 创建项目需要注意几点,如果是基于 .net framework 的项目 需要选择 相应版本的 EF, 如果是跨平台则选择EF Core版本. 我这里选择的是 .ne ...

  5. 开发一个题库系统App和小程序的心得

    序言 对于一名开发者来说,独自开发一款小程序与App,也许总会有一些疑问: 1. 需要掌握哪些技术? 答:java.vue.及常规Linux命令 2. 需要多少成本? 答:服务器购买,云服务器新人50 ...

  6. IDEA 设置自动去掉不用的import

  7. js 获取年、月、周、当前日期第几周、这月有那几周

    查看当前日期是第几周:https://wannianli.tianqi.com/today/zhou/ //获取完整的日期 var date=new Date; var y = date.getFul ...

  8. 第二部分:关键技术领域的开源实践【内网穿透FRP】

    FRP简介 FRP(Fast Reverse Proxy)作为一种高性能的内网穿透工具,支持 TCP.UDP.HTTP.HTTPS 等多种协议.可以将内网服务以安全.便捷的方式通过具有公网IP节点(云 ...

  9. el-config-provider

    el-config-provider是Element Plus库中的一个组件,用于提供全局的配置.它是Element Plus在2.0版本中引入的新组件. el-config-provider组件的作 ...

  10. ProgressBar 进度控件

    在 VB.NET 中,你可以使用 ProgressBar 控件或者自定义的进度提示方法来实现这个功能.以下是一个示例代码,展示如何使用 ProgressBar 控件来显示导入情况: ' 创建一个 Pr ...