SSDT表(System Service Descriptor Table)是Windows操作系统内核中的关键组成部分,负责存储系统服务调用的相关信息。具体而言,SSDT表包含了系统调用的函数地址以及其他与系统服务相关的信息。每个系统调用对应SSDT表中的一个表项,其中存储了相应系统服务的函数地址。SSDT表在64位和32位系统上可能有不同的结构,但通常以数组形式存在。

对于系统调用的监控、分析或修改等高级操作,常需要内核枚举SSDT表基址。这一操作通常通过内核模块实现,涉及技术手段如逆向工程和Hooking。

看一款闭源ARK工具的枚举效果:

直接步入正题,首先SSDT表中文为系统服务描述符表,SSDT表的作用是把应用层与内核联系起来起到桥梁的作用,枚举SSDT表也是反内核工具最基本的功能,通常在64位系统中要想找到SSDT表,需要先找到KeServiceDescriptorTable这个函数,由于该函数没有被导出,所以只能动态的查找它的地址,庆幸的是我们可以通过查找msr(c0000082)这个特殊的寄存器来替代查找KeServiceDescriptorTable这一步,在新版系统中查找SSDT可以归纳为如下这几个步骤。

  • rdmsr c0000082 -> KiSystemCall64Shadow -> KiSystemServiceUser -> SSDT

首先第一步通过rdmsr C0000082 MSR寄存器得到KiSystemCall64Shadow的函数地址,计算KiSystemCall64ShadowKiSystemServiceUser偏移量,如下图所示。

  • 得到相对偏移6ed53180(KiSystemCall64Shadow) - 6ebd2a82(KiSystemServiceUser) = 1806FE
  • 也就是说 6ed53180(rdmsr) - 1806FE = KiSystemServiceUser

如上当我们找到了KiSystemServiceUser的地址以后,在KiSystemServiceUser向下搜索可找到KiSystemServiceRepeat里面就是我们要找的SSDT表基址。

其中fffff8036ef8c880则是SSDT表的基地址,紧随其后的fffff8036ef74a80则是SSSDT表的基地址。

那么如果将这个过程通过代码的方式来实现,我们还需要使用《内核枚举IoTimer定时器》中所使用的特征码定位技术,如下我们查找这段特征。

#include <ntifs.h>
#pragma intrinsic(__readmsr) ULONGLONG ssdt_address = 0; // 获取 KeServiceDescriptorTable 首地址
ULONGLONG GetLySharkCOMKeServiceDescriptorTable()
{
// 设置起始位置
PUCHAR StartSearchAddress = (PUCHAR)__readmsr(0xC0000082) - 0x1806FE; // 设置结束位置
PUCHAR EndSearchAddress = StartSearchAddress + 0x100000;
DbgPrint("[LyShark Search] 扫描起始地址: %p --> 扫描结束地址: %p \n", StartSearchAddress, EndSearchAddress); PUCHAR ByteCode = NULL; UCHAR OpCodeA = 0, OpCodeB = 0, OpCodeC = 0;
ULONGLONG addr = 0;
ULONG templong = 0; for (ByteCode = StartSearchAddress; ByteCode < EndSearchAddress; ByteCode++)
{
// 使用MmIsAddressValid()函数检查地址是否有页面错误
if (MmIsAddressValid(ByteCode) && MmIsAddressValid(ByteCode + 1) && MmIsAddressValid(ByteCode + 2))
{
OpCodeA = *ByteCode;
OpCodeB = *(ByteCode + 1);
OpCodeC = *(ByteCode + 2); // 对比特征值 寻找 nt!KeServiceDescriptorTable 函数地址
/*
nt!KiSystemServiceRepeat:
fffff803`6ebd2b94 4c8d15e59c3b00 lea r10,[nt!KeServiceDescriptorTable (fffff803`6ef8c880)]
fffff803`6ebd2b9b 4c8d1dde1e3a00 lea r11,[nt!KeServiceDescriptorTableShadow (fffff803`6ef74a80)]
fffff803`6ebd2ba2 f7437880000000 test dword ptr [rbx+78h],80h
fffff803`6ebd2ba9 7413 je nt!KiSystemServiceRepeat+0x2a (fffff803`6ebd2bbe) Branch
*/
if (OpCodeA == 0x4c && OpCodeB == 0x8d && OpCodeC == 0x15)
{
// 获取高位地址fffff802
memcpy(&templong, ByteCode + 3, 4); // 与低位64da4880地址相加得到完整地址
addr = (ULONGLONG)templong + (ULONGLONG)ByteCode + 7;
return addr;
}
}
}
return 0;
} VOID UnDriver(PDRIVER_OBJECT driver)
{
DbgPrint(("驱动程序卸载成功! \n"));
} NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath)
{
DbgPrint("hello lyshark"); ssdt_address = GetLySharkCOMKeServiceDescriptorTable();
DbgPrint("[LyShark] SSDT = %p \n", ssdt_address); DriverObject->DriverUnload = UnDriver;
return STATUS_SUCCESS;
}

如上代码中所提及的步骤我想不需要再做解释了,这段代码运行后即可输出SSDT表的基址。

如上通过调用GetLySharkCOMKeServiceDescriptorTable()得到SSDT地址以后我们就需要对该地址进行解密操作。

得到ServiceTableBase的地址后,就能得到每个服务函数的地址。但这个表存放的并不是SSDT函数的完整地址,而是其相对于ServiceTableBase[Index]>>4的数据,每个数据占四个字节,所以计算指定Index函数完整地址的公式是;

  • 在x86平台上: FuncAddress = KeServiceDescriptorTable + 4 * Index
  • 在x64平台上:FuncAddress = [KeServiceDescriptorTable+4*Index]>>4 + KeServiceDescriptorTable

如下汇编代码就是一段解密代码,代码中rcx寄存器传入SSDT的下标,而rdx寄存器则是传入SSDT表基址。

  48:8BC1                  | mov rax,rcx                             |  rcx=index
4C:8D12 | lea r10,qword ptr ds:[rdx] | rdx=ssdt
8BF8 | mov edi,eax |
C1EF 07 | shr edi,7 |
83E7 20 | and edi,20 |
4E:8B1417 | mov r10,qword ptr ds:[rdi+r10] |
4D:631C82 | movsxd r11,dword ptr ds:[r10+rax*4] |
49:8BC3 | mov rax,r11 |
49:C1FB 04 | sar r11,4 |
4D:03D3 | add r10,r11 |
49:8BC2 | mov rax,r10 |
C3 | ret |

有了解密公式以后代码的编写就变得很容易,如下是读取SSDT的完整代码。

#include <ntifs.h>
#pragma intrinsic(__readmsr) typedef struct _SYSTEM_SERVICE_TABLE
{
PVOID ServiceTableBase;
PVOID ServiceCounterTableBase;
ULONGLONG NumberOfServices;
PVOID ParamTableBase;
} SYSTEM_SERVICE_TABLE, *PSYSTEM_SERVICE_TABLE; ULONGLONG ssdt_base_aadress;
PSYSTEM_SERVICE_TABLE KeServiceDescriptorTable; typedef UINT64(__fastcall *SCFN)(UINT64, UINT64);
SCFN scfn; // 解密算法
VOID DecodeSSDT()
{
UCHAR strShellCode[36] = "\x48\x8B\xC1\x4C\x8D\x12\x8B\xF8\xC1\xEF\x07\x83\xE7\x20\x4E\x8B\x14\x17\x4D\x63\x1C\x82\x49\x8B\xC3\x49\xC1\xFB\x04\x4D\x03\xD3\x49\x8B\xC2\xC3";
/*
48:8BC1 | mov rax,rcx | rcx=index
4C:8D12 | lea r10,qword ptr ds:[rdx] | rdx=ssdt
8BF8 | mov edi,eax |
C1EF 07 | shr edi,7 |
83E7 20 | and edi,20 |
4E:8B1417 | mov r10,qword ptr ds:[rdi+r10] |
4D:631C82 | movsxd r11,dword ptr ds:[r10+rax*4] |
49:8BC3 | mov rax,r11 |
49:C1FB 04 | sar r11,4 |
4D:03D3 | add r10,r11 |
49:8BC2 | mov rax,r10 |
C3 | ret |
*/
scfn = ExAllocatePool(NonPagedPool, 36);
memcpy(scfn, strShellCode, 36);
} // 获取 KeServiceDescriptorTable 首地址
ULONGLONG GetKeServiceDescriptorTable()
{
// 设置起始位置
PUCHAR StartSearchAddress = (PUCHAR)__readmsr(0xC0000082) - 0x1806FE; // 设置结束位置
PUCHAR EndSearchAddress = StartSearchAddress + 0x8192;
DbgPrint("扫描起始地址: %p --> 扫描结束地址: %p \n", StartSearchAddress, EndSearchAddress); PUCHAR ByteCode = NULL; UCHAR OpCodeA = 0, OpCodeB = 0, OpCodeC = 0;
ULONGLONG addr = 0;
ULONG templong = 0; for (ByteCode = StartSearchAddress; ByteCode < EndSearchAddress; ByteCode++)
{
// 使用MmIsAddressValid()函数检查地址是否有页面错误
if (MmIsAddressValid(ByteCode) && MmIsAddressValid(ByteCode + 1) && MmIsAddressValid(ByteCode + 2))
{
OpCodeA = *ByteCode;
OpCodeB = *(ByteCode + 1);
OpCodeC = *(ByteCode + 2); // 对比特征值 寻找 nt!KeServiceDescriptorTable 函数地址
// lyshark
// 4c 8d 15 e5 9e 3b 00 lea r10,[nt!KeServiceDescriptorTable (fffff802`64da4880)]
// 4c 8d 1d de 20 3a 00 lea r11,[nt!KeServiceDescriptorTableShadow (fffff802`64d8ca80)]
if (OpCodeA == 0x4c && OpCodeB == 0x8d && OpCodeC == 0x15)
{
// 获取高位地址fffff802
memcpy(&templong, ByteCode + 3, 4); // 与低位64da4880地址相加得到完整地址
addr = (ULONGLONG)templong + (ULONGLONG)ByteCode + 7;
return addr;
}
}
}
return 0;
} // 得到函数相对偏移地址
ULONG GetOffsetAddress(ULONGLONG FuncAddr)
{
ULONG dwtmp = 0;
PULONG ServiceTableBase = NULL;
if (KeServiceDescriptorTable == NULL)
{
KeServiceDescriptorTable = (PSYSTEM_SERVICE_TABLE)GetKeServiceDescriptorTable();
}
ServiceTableBase = (PULONG)KeServiceDescriptorTable->ServiceTableBase;
dwtmp = (ULONG)(FuncAddr - (ULONGLONG)ServiceTableBase);
return dwtmp << 4;
} // 根据序号得到函数地址
ULONGLONG GetSSDTFunctionAddress(ULONGLONG NtApiIndex)
{
ULONGLONG ret = 0;
if (ssdt_base_aadress == 0)
{
// 得到ssdt基地址
ssdt_base_aadress = GetKeServiceDescriptorTable();
}
if (scfn == NULL)
{
DecodeSSDT();
}
ret = scfn(NtApiIndex, ssdt_base_aadress);
return ret;
} VOID UnDriver(PDRIVER_OBJECT driver)
{
DbgPrint(("驱动程序卸载成功! \n"));
} NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath)
{
DbgPrint("hello lyshark \n"); ULONGLONG ssdt_address = GetKeServiceDescriptorTable();
DbgPrint("SSDT基地址 = %p \n", ssdt_address); // 根据序号得到函数地址
ULONGLONG address = GetSSDTFunctionAddress(51);
DbgPrint("[LyShark] NtOpenFile地址 = %p \n", address); // 得到相对SSDT的偏移量
DbgPrint("函数相对偏移地址 = %p \n", GetOffsetAddress(address)); DriverObject->DriverUnload = UnDriver;
return STATUS_SUCCESS;
}

运行后即可得到SSDT下标为51的函数也就是得到NtOpenFile的绝对地址和相对地址。

你也可以打开ARK工具,对比一下是否一致,如下图所示,LyShark的代码是没有任何问题的。

6.1 Windows驱动开发:内核枚举SSDT表基址的更多相关文章

  1. 驱动开发:Win10内核枚举SSDT表基址

    三年前面朝黄土背朝天的我,写了一篇如何在Windows 7系统下枚举内核SSDT表的文章<驱动开发:内核读取SSDT表基址>三年过去了我还是个单身狗,开个玩笑,微软的Windows 10系 ...

  2. Windows驱动开发-内核常用内存函数

    搞内存常用函数 C语言 内核 malloc ExAllocatePool memset RtlFillMemory memcpy RtlMoveMemory free ExFreePool

  3. Windows驱动开发(中间层)

    Windows驱动开发 一.前言 依据<Windows内核安全与驱动开发>及MSDN等网络质料进行学习开发. 二.初步环境 1.下载安装WDK7.1.0(WinDDK\7600.16385 ...

  4. [Windows驱动开发](一)序言

    笔者学习驱动编程是从两本书入门的.它们分别是<寒江独钓——内核安全编程>和<Windows驱动开发技术详解>.两本书分别从不同的角度介绍了驱动程序的制作方法. 在我理解,驱动程 ...

  5. windows驱动开发推荐书籍

    [作者] 猪头三 个人网站 :http://www.x86asm.com/ [序言] 很多人都对驱动开发有兴趣,但往往找不到正确的学习方式.当然这跟驱动开发的本土化资料少有关系.大多学的驱动开发资料都 ...

  6. windows 驱动开发入门——驱动中的数据结构

    最近在学习驱动编程方面的内容,在这将自己的一些心得分享出来,供大家参考,与大家共同进步,本人学习驱动主要是通过两本书--<独钓寒江 windows安全编程> 和 <windows驱动 ...

  7. Windows驱动——读书笔记《Windows驱动开发技术详解》

    =================================版权声明================================= 版权声明:原创文章 谢绝转载  请通过右侧公告中的“联系邮 ...

  8. Windows驱动开发-IRP的完成例程

    <Windows驱动开发技术详解 >331页, 在将IRP发送给底层驱动或其他驱动之前,可以对IRP设置一个完成例程,一旦底层驱动将IRP完成后,IRP完成例程立刻被处罚,通过设置完成例程 ...

  9. C++第三十八篇 -- 研究一下Windows驱动开发(二)--WDM式驱动的加载

    基于Windows驱动开发技术详解这本书 一.简单的INF文件剖析 INF文件是一个文本文件,由若干个节(Section)组成.每个节的名称用一个方括号指示,紧接着方括号后面的就是节内容.每一行就是一 ...

  10. C++第三十三篇 -- 研究一下Windows驱动开发(一)内部构造介绍

    因为工作原因,需要做一些与网卡有关的测试,其中涉及到了驱动这一块的知识,虽然程序可以运行,但是不搞清楚,心里总是不安,觉得没理解清楚.因此想看一下驱动开发.查了很多资料,看到有人推荐Windows驱动 ...

随机推荐

  1. 【论文笔记#2】Farseg++:用于高空间分辨率遥感图像地理空间对象分割的前景感知关系网络

    论文来源 IEEE Transactions on Pattern Analysis and Machine Intelligence 作者 Zhuo Zheng; Yanfei Zhong; Jun ...

  2. Vue3--使用脚手架创建一个vue应用,实现todolist

    一.安装脚手架,运行项目 1.1 安装,运行 首先安装 16.0 或更高版本的 Node.js 然后在cmd安装并执行 create-vue 它是 Vue 官方的项目脚手架工具 npm init vu ...

  3. 【Boost】boost.log 要点笔记

    常用简写: namespace logging = boost::log; namespace src = boost::log::sources; namespace expr = boost::l ...

  4. SpringBoot 项目实战 | 瑞吉外卖 Day06

    该系列将记录一份完整的实战项目的完成过程,该篇属于第六天 案例来自B站黑马程序员Java项目实战<瑞吉外卖>,请结合课程资料阅读以下内容 该篇我们将完成以下内容: 用户地址簿相关功能 菜品 ...

  5. 图解 Promise 实现原理(二)—— Promise 链式调用

    本文首发于 vivo互联网技术 微信公众号 链接: https://mp.weixin.qq.com/s/Xz2bGaLxVL4xw1M2hb2nJQ作者:Morrain 很多同学在学习 Promis ...

  6. Golang之文件系统事件监听

    Golang之文件系统事件监听 基本介绍 文件系统事件是指文件系统相关的各种操作和状态变化,当一个应用层的进程操作文件或目录时,会触发system call,内核的notification子系统可以守 ...

  7. Spring自带的Objects等工具类(减少繁琐代码)

    断言: AssertUtils assert 关键字在 JDK1.4 中引入,可通过 JVM 参数-enableassertions开启 SpringBoot 中提供了 Assert 断言工具类,通常 ...

  8. AvaloniaUI 取消标题栏,无边框无最大最小化,

    AvaloniaUI 取消标题栏,无边框无最大最小化, 创建一个Window控件 并且在Window中添加以下代码 ExtendClientAreaToDecorationsHint="Tr ...

  9. 如何让pc端网站在手机上可以等比缩放的整个显示

      将 头部标签的  <meta name="viewport" content="width=device-width, initial-scale=1.0&qu ...

  10. 【Spring 5核心原理】1设计模式

    1.1开闭原则 开闭原则(open-closed principle,OCP)是指一个软件实体(如类,模块和函数)应该对扩展开放,对修改关闭.所谓的开闭,也正是对扩展和修改两个行为的一个原则. 强调用 ...