加速体细胞突变检测分析流程-系列2(ctDNA等高深度样本)
Sentieon●体细胞变异检测系列-2
Sentieon 致力于解决生物信息数据分析中的速度与准确度瓶颈,通过算法的深度优化和企业级的软件工程,大幅度提升NGS数据处理的效率、准确度和可靠性。
针对体细胞变异检测,Sentieon软件提供两个模块:TNscope和TNhaplotyer2。
TNscope:此模块使用Sentieon特有的算法,拥有更快的计算速度(提速10倍+)和更高的计算精度,对临床基因诊断样本尤其适用;
TNhaplotyper2:此模块匹配Mutect2(现在匹配到4.1.9)结果的同时,计算速度提升10倍以上。


ctDNA变异检测分析
以下给出的步骤脚本,主要针对ctDNA和其他高深度测序的样本数据(2000-5000x depth, AF > 0.3%)
第一步:Alignment
# ******************************************
# 1a. Mapping reads with BWA-MEM, sorting for tumor sample
# ******************************************
( sentieon bwa mem -M -R "@RG\tID:$tumor\tSM:$tumor\tPL:$platform" \
-t $nt -K 10000000 $fasta $tumor_fastq_1 $tumor_fastq_2 || \
echo -n 'error' ) | \
sentieon util sort -o tumor_sorted.bam -t $nt --sam2bam -i - # ******************************************
# 1b. Mapping reads with BWA-MEM, sorting for normal sample
# ******************************************
( sentieon bwa mem -M -R "@RG\tID:$normal\tSM:$normal\tPL:$platform" \
-t $nt -K 10000000 $fasta $normal_fastq_1 $normal_fastq_2 ||
echo -n 'error' ) | \
sentieon util sort -o normal_sorted.bam -t $nt --sam2bam -i -
第二步:PCR Duplicate Removal (Skip For Amplicon)
# ******************************************
# 2a. Remove duplicate reads for tumor sample.
# ******************************************
# ******************************************
sentieon driver -t $nt -i tumor_sorted.bam \
--algo LocusCollector \
--fun score_info \ tumor_score.txt sentieon driver -t $nt -i tumor_sorted.bam \
--algo Dedup \
--score_info tumor_score.txt \
--metrics tumor_dedup_metrics.txt \ tumor_deduped.bam
# ******************************************
# 2b. Remove duplicate reads for normal sample.
# ******************************************
sentieon driver -t $nt -i normal_sorted.bam \
--algo LocusCollector \
--fun score_info \ normal_score.txt sentieon driver -t $nt -i normal_sorted.bam \
--algo Dedup \
--score_info normal_score.txt \
--metrics normal_dedup_metrics.txt \ normal_deduped.bam
第三步: Base Quality Score Recalibration (Skip For Small Panel)
# ******************************************
# 3a. Base recalibration for tumor sample
# ******************************************
sentieon driver -r $fasta -t $nt -i tumor_deduped.bam --interval $BED \
--algo QualCal \
-k $dbsnp \
-k $known_Mills_indels \
-k $known_1000G_indels \ tumor_recal_data.table
# ******************************************
# 3b. Base recalibration for normal sample
# ******************************************
sentieon driver -r $fasta -t $nt -i normal_deduped.bam --interval $BED \
--algo QualCal \
-k $dbsnp \
-k $known_Mills_indels \
-k $known_1000G_indels \
normal_recal_data.table
第四步:Variant Calling (Tumor Only)
sentieon driver -r $fasta -t $nt -i tumor_deduped.bam --interval $BED --interval_padding 10 \
--algo TNscope \
--tumor_sample $TUMOR_SM \
--dbsnp $dbsnp \
--disable_detector sv \
--min_tumor_allele_frac 3e-3 \
--filter_t_alt_frac 3e-3 \
--clip_by_minbq 1 \
--min_init_tumor_lod 3.0 \
--min_tumor_lod 3.0 \
--assemble_mode 4 \
--resample_depth 100000 \
[--pon panel_of_normal.vcf \]
output_tnscope.pre_filter.vcf.gz
第五步:Variant Filtration (Tumor Only)
bcftools annotate -x "FILTER/triallelic_site" output_tnscope.pre_filter.vcf.gz | \
bcftools filter -m + -s "low_qual" -e "QUAL < 10" | \
bcftools filter -m + -s "short_tandem_repeat" -e "RPA[0]>=10" | \
bcftools filter -m + -s "read_pos_bias" -e "FMT/ReadPosRankSumPS[0] < -5" | \
bcftools norm -f $fasta -m +any | \
sentieon util vcfconvert - output_tnscope.filtered.vcf.gz
加速体细胞突变检测分析流程-系列2(ctDNA等高深度样本)的更多相关文章
- 深度学习与CV教程(13) | 目标检测 (SSD,YOLO系列)
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
- 16S 基础知识、分析工具和分析流程详解
工作中有个真理:如果你连自己所做的工作的来龙去脉都讲不清楚,那你是绝对不可能把这份工作做好的. 这适用于任何行业.如果你支支吾吾,讲不清楚,那么说难听点,你在混日子,没有静下心来工作. 检验标准:随时 ...
- GPU—加速数据科学工作流程
GPU-加速数据科学工作流程 GPU-ACCELERATE YOUR DATA SCIENCE WORKFLOWS 传统上,数据科学工作流程是缓慢而繁琐的,依赖于cpu来加载.过滤和操作数据,训练和部 ...
- 基于GPU加速的三维空间分析【转】
基于GPU加速的三维空间分析 标签:supermap地理信息系统gisit 文:李凯 随着三维GIS 的快速发展和应用普及,三维空间分析技术以其应用中的实用性成为当前GIS技术研究的热点领域.面对日益 ...
- LR性能测试分析流程
LR性能测试分析流程 一. 判断测试结果的有效性 (1)在整个测试场景的执行过程中,测试环境是否正常. (2)测试场景的设置是否正确.合理. (3)测试结果是否直接暴露出系统的一些问题. (4 ...
- Graylog2进阶 打造基于Nginx日志的Web入侵检测分析系统
对于大多数互联网公司,基于日志分析的WEB入侵检测分析是不可或缺的. 那么今天我就给大家讲一讲如何用graylog的extractor来实现这一功能. 首先要找一些能够识别的带有攻击行为的关键字作为匹 ...
- 【译】.NET 的新的动态检测分析
随着 Visual Studio 16.9 的发布,Visual Studio 中的检测分析变得更好用了.本文介绍我们新的动态分析工具.这个工具显示了函数被调用的确切次数,并且比我们以前的静态检测工具 ...
- 基于深度学习的恶意样本行为检测(含源码) ----采用CNN深度学习算法对Cuckoo沙箱的动态行为日志进行检测和分类
from:http://www.freebuf.com/articles/system/182566.html 0×01 前言 目前的恶意样本检测方法可以分为两大类:静态检测和动态检测.静态检测是指并 ...
- 基于深度学习的安卓恶意应用检测----------android manfest.xml + run time opcode, use 深度置信网络(DBN)
基于深度学习的安卓恶意应用检测 from:http://www.xml-data.org/JSJYY/2017-6-1650.htm 苏志达, 祝跃飞, 刘龙 摘要: 针对传统安卓恶意程序检测 ...
- Expert 诊断优化系列------------------你的CPU高么?
现在很多用户被数据库的慢的问题所困扰,又苦于花钱请一个专业的DBA成本太高.软件维护人员对数据库的了解又不是那么深入,所以导致问题迟迟不能解决,或只能暂时解决不能得到根治.开发人员解决数据问题基本又是 ...
随机推荐
- [网络]HTTPS下服务器与浏览器的通信:HTTPS背后的加密算法 | TLS := SSL [转载]
全文转载自: HTTPS背后的加密算法 - 博客园 1 概述: 基本原理/过程 当你在浏览器的地址栏上输入https开头的网址后,浏览器和服务器之间会在接下来的几百毫秒内进行大量的通信.InfoQ的这 ...
- Java设计模式 —— 适配器模式
9 适配器模式 9.1 结构型模式 结构型模式(Structural Pattern) 关注如何将现有类或对象组织在一起形成更强大的结构.结构型模式根据描述目标不同可以分为两种: 类结构型模式:关心类 ...
- C# Kafka重置到最新的偏移量,即从指定的Partition订阅消息使用Assign方法
在使用Kafka的过程中,消费者断掉之后,再次开始消费时,消费者会从断掉时的位置重新开始消费. 场景再现:比如昨天消费者晚上断掉了,今天上午我们会发现kafka消费的数据不是最新的,而是昨天晚上的数据 ...
- .NET CORE 部署到IIS上,HTTP 错误 500.19 - Internal Server Error
经排查,是因为项目中web.config的rewrite节点不支持,注释掉此节点即可,或者尝试下载相关依赖以支持此节点
- python:模拟购票的小程序
问题描述:小白学习python的第N天,继续练习.做一个模拟购票的小程序,没有用数据库和文件来存储数据,只是能够单词选择. # hzh 每天进步一点点 # 2022/5/13 17:24 import ...
- 【Python爬虫(一)】XPath
解析方式:XPath XPath的基本使用 1 安装lxml库 conda install lxml 下载慢的话可以试一下热点或切换下载源 2 导入etree from lxml import etr ...
- Vue修改单页面背景颜色
- ADC采样时间、Chirp扫频时间、Chirp重复周期的区分
图1 FMCW雷达信号参数 在德州仪器TI毫米波雷达中,开发板参数配置往往涉及如图1所示的信号参数. 宏观上看,信号参数包括\(ADC\)采样时间.脉冲重复周期(\(Chirp\)扫频周期)和帧时间( ...
- redhat中如何设置开机启动脚本
redhat中如何设置开机启动脚本 前面转载了一篇关于开机启动脚本的文章,觉得写的很详细了,但是自己没有实践,下面是自己实践了一种方式,来设置开机启动脚本(因为有时候我们必须开机关闭一些防火墙,SEL ...
- Python 变量作用域和列表
变量作用域 变量由作用范围限制 分类:按照作用域分类 全局(global):在函数外部定义 局部(local):在函数内部定义 变量的作用范围: 全局变量:在整个全局范围有效 全局碧昂量在局部可以使用 ...