代码随想录算法训练营Day50 动态规划
代码随想录算法训练营
代码随想录算法训练营Day50 动态规划| 123.买卖股票的最佳时机III 188.买卖股票的最佳时机IV
123.买卖股票的最佳时机III
题目链接:123.买卖股票的最佳时机III
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1: 输入:prices = [3,3,5,0,0,3,1,4] 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。
总体思路
关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。
动规五部曲:
- 确定dp数组以及下标的含义
一天一共就有五个状态, - 没有操作 (其实我们也可以不设置这个状态)
- 第一次持有股票
- 第一次不持有股票
- 第二次持有股票
- 第二次不持有股票
dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。
需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。
例如dp[i][1],并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么dp[i][1]延续买入股票的这个状态。 - 确定递推公式
达到dp[i][1]状态,有两个具体操作:
- 操作一:第i天买入股票了,那么
dp[i][1] = dp[i-1][0] - prices[i] - 操作二:第i天没有操作,而是沿用前一天买入的状态,即:
dp[i][1] = dp[i - 1][1]
那么dp[i][1]究竟选dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?
一定是选最大的,所以dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);
同理dp[i][2]也有两个操作: - 操作一:第i天卖出股票了,那么
dp[i][2] = dp[i - 1][1] + prices[i] - 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:
dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
同理可推出剩下状态部分:
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
- dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;
第0天做第一次买入的操作,dp[0][1] = -prices[0];
第0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;
第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
同理第二次卖出初始化`dp[0][4] = 0; - 确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。 - 举例推导dp数组
以输入[1,2,3,4,5]为例
可以看到红色框为最后两次卖出的状态。
现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。
所以最终最大利润是dp[4][4]。
// 版本一
class Solution {
public:
int maxProfit(vector<int>& prices) {
if (prices.size() == 0) return 0;
vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
for (int i = 1; i < prices.size(); i++) {
dp[i][0] = dp[i - 1][0];
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return dp[prices.size() - 1][4];
}
};
188.买卖股票的最佳时机IV
题目链接:188.买卖股票的最佳时机IV
给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1: 输入:k = 2, prices = [2,4,1] 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。
总体思路
这道题目可以说是[[#123.买卖股票的最佳时机III]]的进阶版,这里要求至多有k次交易。
动规五部曲,分析如下:
- 确定dp数组以及下标的含义
在[[#123.买卖股票的最佳时机III]]中,定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。
使用二维数组dp[i][j]:第i天的状态为j,所剩下的最大现金是dp[i][j]
j的状态表示为:
- 0 表示不操作
- 1 第一次买入
- 2 第一次卖出
- 3 第二次买入
- 4 第二次卖出
- .....
大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入。
题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。
所以二维dp数组的C++定义为:
vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
- 确定递推公式
还要强调一下:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。
达到dp[i][1]状态,有两个具体操作:
- 操作一:第i天买入股票了,那么
dp[i][1] = dp[i - 1][0] - prices[i] - 操作二:第i天没有操作,而是沿用前一天买入的状态,即:
dp[i][1] = dp[i - 1][1]`` 选最大的,所以dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);同理dp[i][2]`也有两个操作: - 操作一:第i天卖出股票了,那么
dp[i][2] = dp[i - 1][1] + prices[i] - 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:
dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
同理可以类比剩下的状态,代码如下:
for (int j = 0; j < 2 * k - 1; j += 2) {
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
和[[#123.买卖股票的最佳时机III]]最大的区别就是这里要类比j为奇数是买,偶数是卖的状态。
3. dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;
第0天做第一次买入的操作,dp[0][1] = -prices[0];
第0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;
第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
第二次卖出初始化dp[0][4] = 0;
所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]
代码如下:
for (int j = 1; j < 2 * k; j += 2) {
dp[0][j] = -prices[0];
}
在初始化的地方同样要类比j为偶数是卖、奇数是买的状态。
4. 确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
5. 举例推导dp数组
以输入[1,2,3,4,5],k=2为例。
最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]即红色部分就是最后求解。
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
if (prices.size() == 0) return 0;
vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
for (int j = 1; j < 2 * k; j += 2) {
dp[0][j] = -prices[0];
}
for (int i = 1;i < prices.size(); i++) {
for (int j = 0; j < 2 * k - 1; j += 2) {
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
}
return dp[prices.size() - 1][2 * k];
}
};
代码随想录算法训练营Day50 动态规划的更多相关文章
- 代码随想录算法训练营day01 | leetcode 704/27
前言 考研结束半个月了,自己也简单休整了一波,估了一下分,应该能进复试,但还是感觉不够托底.不管怎样,要把代码能力和八股捡起来了,正好看到卡哥有这个算法训练营,遂果断参加,为机试和日后求职打下一个 ...
- 代码随想录算法训练营day02 | leetcode 977/209/59
leetcode 977 分析1.0: 要求对平方后的int排序,而给定数组中元素可正可负,一开始有思维误区,觉得最小值一定在0左右徘徊,但数据可能并不包含0:遂继续思考,发现元素分布有三种情 ...
- 代码随想录算法训练营day22 | leetcode 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点
LeetCode 235. 二叉搜索树的最近公共祖先 分析1.0 二叉搜索树根节点元素值大小介于子树之间,所以只要找到第一个介于他俩之间的节点就行 class Solution { public T ...
- 代码随想录算法训练营day17 | leetcode ● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和
LeetCode 110.平衡二叉树 分析1.0 求左子树高度和右子树高度,若高度差>1,则返回false,所以我递归了两遍 class Solution { public boolean is ...
- 代码随想录算法训练营day13
基础知识 二叉树基础知识 二叉树多考察完全二叉树.满二叉树,可以分为链式存储和数组存储,父子兄弟访问方式也有所不同,遍历也分为了前中后序遍历和层次遍历 Java定义 public class Tree ...
- 代码随想录算法训练营day12 | leetcode 239. 滑动窗口最大值 347.前 K 个高频元素
基础知识 ArrayDeque deque = new ArrayDeque(); /* offerFirst(E e) 在数组前面添加元素,并返回是否添加成功 offerLast(E e) 在数组后 ...
- 代码随想录算法训练营day10 | leetcode 232.用栈实现队列 225. 用队列实现栈
基础知识 使用ArrayDeque 实现栈和队列 stack push pop peek isEmpty() size() queue offer poll peek isEmpty() size() ...
- 代码随想录算法训练营day06 | leetcode 242、349 、202、1
基础知识 哈希 常见的结构(不要忘记数组) 数组 set (集合) map(映射) 注意 哈希冲突 哈希函数 LeetCode 242 分析1.0 HashMap<Character, Inte ...
- 代码随想录算法训练营day03 | LeetCode 203/707/206
基础知识 数据结构初始化 // 链表节点定义 public class ListNode { // 结点的值 int val; // 下一个结点 ListNode next; // 节点的构造函数(无 ...
- 代码随想录算法训练营day24 | leetcode 77. 组合
基础知识 回溯法解决的问题都可以抽象为树形结构,集合的大小就构成了树的宽度,递归的深度构成的树的深度 void backtracking(参数) { if (终止条件) { 存放结果; return; ...
随机推荐
- singleflight 使用记录以及源码阅读
singleflight 使用方法以及源码阅读 1.简介 安装方式: go get -u golang.org/x/sync/singleflight singleflight 是Go官方扩展同步包的 ...
- Linux的优缺点
作为一个Archlinux用户, 断然是不会认为Linux有缺点的, 任何所谓的缺点都是自己技艺不精或者没有好好利用搜索引擎而造成的狭隘偏见. 但是假如是一位习惯于视窗系统的新手而言, 假如他上手的是 ...
- NotionAI - 文档领域的ChatGPT,一款 AI 加持的在线文档编辑和管理工具
简介 NotionAI - 文档领域的ChatGPT,一款 AI 加持的在线文档编辑和管理工具 作为国际领先的在线文档编辑和管理工具,Notion受到了广大用户的欢迎,尤其是程序员们.它不仅支持笔记. ...
- VUEX面试题
1.你有写过vuex中store的插件吗? 答:没有 2.你有使用过vuex的module吗?主要是在什么场景下使用? 答:把状态全部集中在状态树上,非常难以维护.按模块分成多个module,状态树延 ...
- Visual Studio 2022 不支持 .NET Framework 4.5 项目的解决办法
概述 升级到Visual Studio 2022后,打开速度快了很多,开发体验也舒服很多.只是使用过程中遇到了一个比较尴尬的问题:默认Visual Studio 2022 不再支持安装 .NET F ...
- [Spring MVC]@RequestMapping 与 @RequestMapping+@RequestResponse的区别
假定:返回格式均为JSON,JSON实体对象myJson的属性有:data.message.code.status. 二者的区别在于: @RequestMapping:会在最外层包裹 data属性,将 ...
- 执行计划display_cursor函数
问题描述:关于oracle查看真实的执行计划,使用select * from table(dbms_xplan.display_cursor(null,null));的方式来获取执行计划 参考文档:h ...
- hadoop伪分布式集群的安装(不是单机版)
准备工作 三台虚拟机,关闭防火墙,关闭selinux 查看防火状态 systemctl status firewalld 暂时关闭防火墙 systemctl stop firewalld 永久关闭防火 ...
- vue中通过$emit实现子向父通信
本篇讨论vue中使用$emit实现子向父通信, 第一步:我们在父组件中注册子组件,然后再给子组件标签添加一个自定义事件监听,这样在子组件实例上就绑定了一个自定义的事件add. 后面如果触发add事件, ...
- ansible-kubeadm在线安装k8s v1.19-v1.20版本
ansible-kubeadm在线安装k8s v1.19-v1.20版本 1. ansible-kubeadm在线安装k8s v1.19-v1.20版本 安装要求 确保所有节点系统时间一致 操作系统要 ...