代码随想录算法训练营

代码随想录算法训练营Day50 动态规划| 123.买卖股票的最佳时机III 188.买卖股票的最佳时机IV

123.买卖股票的最佳时机III

题目链接:123.买卖股票的最佳时机III

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1: 输入:prices = [3,3,5,0,0,3,1,4] 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。

总体思路

关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

动规五部曲:

  1. 确定dp数组以及下标的含义

    一天一共就有五个状态,
  2. 没有操作 (其实我们也可以不设置这个状态)
  3. 第一次持有股票
  4. 第一次不持有股票
  5. 第二次持有股票
  6. 第二次不持有股票

    dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

    需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

    例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。
  7. 确定递推公式

    达到dp[i][1]状态,有两个具体操作:
  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

    那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

    一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

    同理dp[i][2]也有两个操作:
  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

    所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

    同理可推出剩下状态部分:

    dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]); dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
  1. dp数组如何初始化

    第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

    第0天做第一次买入的操作,dp[0][1] = -prices[0];

    第0天做第一次卖出的操作,这个初始值应该是多少呢?

    此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

    第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

    第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

    所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

    同理第二次卖出初始化`dp[0][4] = 0;
  2. 确定遍历顺序

    从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
  3. 举例推导dp数组

    以输入[1,2,3,4,5]为例



    可以看到红色框为最后两次卖出的状态。

    现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

    所以最终最大利润是dp[4][4]
// 版本一
class Solution {
public:
int maxProfit(vector<int>& prices) {
if (prices.size() == 0) return 0;
vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
for (int i = 1; i < prices.size(); i++) {
dp[i][0] = dp[i - 1][0];
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return dp[prices.size() - 1][4];
}
};

188.买卖股票的最佳时机IV

题目链接:188.买卖股票的最佳时机IV

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1: 输入:k = 2, prices = [2,4,1] 输出:2 解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2。

总体思路

这道题目可以说是[[#123.买卖股票的最佳时机III]]的进阶版,这里要求至多有k次交易。

动规五部曲,分析如下:

  1. 确定dp数组以及下标的含义

    在[[#123.买卖股票的最佳时机III]]中,定义了一个二维dp数组,本题其实依然可以用一个二维dp数组。

    使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

    j的状态表示为:
  • 0 表示不操作
  • 1 第一次买入
  • 2 第一次卖出
  • 3 第二次买入
  • 4 第二次卖出
  • .....

    大家应该发现规律了吧 ,除了0以外,偶数就是卖出,奇数就是买入

    题目要求是至多有K笔交易,那么j的范围就定义为 2 * k + 1 就可以了。

    所以二维dp数组的C++定义为:
vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
  1. 确定递推公式

    还要强调一下:dp[i][1]表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

    达到dp[i][1]状态,有两个具体操作:
  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]`` 选最大的,所以 dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]); 同理dp[i][2]`也有两个操作:
  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

    所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

    同理可以类比剩下的状态,代码如下:
for (int j = 0; j < 2 * k - 1; j += 2) {
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}

和[[#123.买卖股票的最佳时机III]]最大的区别就是这里要类比j为奇数是买,偶数是卖的状态

3. dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后在买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

第二次卖出初始化dp[0][4] = 0;

所以同理可以推出dp[0][j]当j为奇数的时候都初始化为 -prices[0]

代码如下:

for (int j = 1; j < 2 * k; j += 2) {
dp[0][j] = -prices[0];
}

在初始化的地方同样要类比j为偶数是卖、奇数是买的状态

4. 确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5. 举例推导dp数组

以输入[1,2,3,4,5],k=2为例。



最后一次卖出,一定是利润最大的,dp[prices.size() - 1][2 * k]即红色部分就是最后求解。

class Solution {
public:
int maxProfit(int k, vector<int>& prices) { if (prices.size() == 0) return 0;
vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));
for (int j = 1; j < 2 * k; j += 2) {
dp[0][j] = -prices[0];
}
for (int i = 1;i < prices.size(); i++) {
for (int j = 0; j < 2 * k - 1; j += 2) {
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
}
return dp[prices.size() - 1][2 * k];
}
};

代码随想录算法训练营Day50 动态规划的更多相关文章

  1. 代码随想录算法训练营day01 | leetcode 704/27

    前言   考研结束半个月了,自己也简单休整了一波,估了一下分,应该能进复试,但还是感觉不够托底.不管怎样,要把代码能力和八股捡起来了,正好看到卡哥有这个算法训练营,遂果断参加,为机试和日后求职打下一个 ...

  2. 代码随想录算法训练营day02 | leetcode 977/209/59

    leetcode 977   分析1.0:   要求对平方后的int排序,而给定数组中元素可正可负,一开始有思维误区,觉得最小值一定在0左右徘徊,但数据可能并不包含0:遂继续思考,发现元素分布有三种情 ...

  3. 代码随想录算法训练营day22 | leetcode 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点

    LeetCode 235. 二叉搜索树的最近公共祖先 分析1.0  二叉搜索树根节点元素值大小介于子树之间,所以只要找到第一个介于他俩之间的节点就行 class Solution { public T ...

  4. 代码随想录算法训练营day17 | leetcode ● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和

    LeetCode 110.平衡二叉树 分析1.0 求左子树高度和右子树高度,若高度差>1,则返回false,所以我递归了两遍 class Solution { public boolean is ...

  5. 代码随想录算法训练营day13

    基础知识 二叉树基础知识 二叉树多考察完全二叉树.满二叉树,可以分为链式存储和数组存储,父子兄弟访问方式也有所不同,遍历也分为了前中后序遍历和层次遍历 Java定义 public class Tree ...

  6. 代码随想录算法训练营day12 | leetcode 239. 滑动窗口最大值 347.前 K 个高频元素

    基础知识 ArrayDeque deque = new ArrayDeque(); /* offerFirst(E e) 在数组前面添加元素,并返回是否添加成功 offerLast(E e) 在数组后 ...

  7. 代码随想录算法训练营day10 | leetcode 232.用栈实现队列 225. 用队列实现栈

    基础知识 使用ArrayDeque 实现栈和队列 stack push pop peek isEmpty() size() queue offer poll peek isEmpty() size() ...

  8. 代码随想录算法训练营day06 | leetcode 242、349 、202、1

    基础知识 哈希 常见的结构(不要忘记数组) 数组 set (集合) map(映射) 注意 哈希冲突 哈希函数 LeetCode 242 分析1.0 HashMap<Character, Inte ...

  9. 代码随想录算法训练营day03 | LeetCode 203/707/206

    基础知识 数据结构初始化 // 链表节点定义 public class ListNode { // 结点的值 int val; // 下一个结点 ListNode next; // 节点的构造函数(无 ...

  10. 代码随想录算法训练营day24 | leetcode 77. 组合

    基础知识 回溯法解决的问题都可以抽象为树形结构,集合的大小就构成了树的宽度,递归的深度构成的树的深度 void backtracking(参数) { if (终止条件) { 存放结果; return; ...

随机推荐

  1. Docker教程、架构、资源

    一.Docker教程 ​ Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从 Apache2.0 协议开源.Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中 ...

  2. BUU-RE-刮开有奖-WinMain

    WinMain函数参数介绍 int WINAPI WinMain( HINSTANCE hInstance, // handle to current instance HINSTANCE hPrev ...

  3. CentOS 9 开局配置

    CentOS 9 开局配置 CentOS 9 发布有几年了,一直没有尝试使用,CentOS 9 有一些变动. 查看系统基础信息 # 查看系统基础信息 [root@chenby ~]# neofetch ...

  4. 在 Rainbond 上使用在线知识库系统zyplayer-doc

    zyplayer-doc 是一款适合企业和个人使用的WIKI知识库管理工具,提供在线化的知识库管理功能,专为私有化部署而设计,最大程度上保证企业或个人的数据安全,可以完全以内网的方式来部署使用它. 当 ...

  5. PyInstaller打包的文件闪退

    问题描述:使用PyInstaller打包的pycharm写的python程序,打包好后从windows上打开一直闪退 一.双击exe文件闪退,从cmd命令行中与加载程序,可以看到具体的报错 D:\di ...

  6. docker 容器操作、应用部署、mysql,redis,nginx、迁移与备份、Dockerfile

    容器操作 # 启动容器 docker start 容器id # 停止容器 docker stop 容器id # 文件拷贝 先创建文件 mkdir:文件夹 vi vim touch:文件 # 容器的文件 ...

  7. 【故障公告】被放出的 Bing 爬虫,又被爬宕机的园子

    这些巨头爬虫们现在怎么了?记忆中2022年之前的十几年,园子没有遇到过被巨头爬虫们爬宕机的情况,巨头们都懂得爱护,都懂得控制节奏,都懂得在爬网时控制并发连接数以免给目标网站造成过大压力. 从去年开始, ...

  8. pinia的使用

    1. pinia和vuex的区别 pinia没有mutations,只有:state. getters. actions pinia分模块不需要modules(之前vuex分模块需要modules) ...

  9. react异常 Each child in a list should have a unique “key” prop

    react异常警告:Each child in a list should have a unique "key" prop 原因:Dom在渲染数组时,需要一个key,不然嵌套数组 ...

  10. 深度学习-08(PaddlePaddle文本分类)

    深度学习-08(PaddlePaddle文本分类) 文章目录 深度学习-08(PaddlePaddle文本分类) NLP概述 NLP基本概念 什么是NLP NLP的主要任务 传统NLP方法 传统NLP ...