缺失值指数据集中某些变量的值有缺少的情况,缺失值也被称为NA(not available)值。在pandas里使用浮点值NaN(Not a Number)表示浮点数和非浮点数中的缺失值,用NaT表示时间序列中的缺失值,此外python内置的None值也会被当作是缺失值。需要注意的是,有些缺失值也会以其他形式出现,比如说用NULL,0或无穷大(inf)表示。

pip install d2l -i https://pypi.tuna.tsinghua.edu.cn/simple
import os
import pandas as pd # 添加 测试数据
os.makedirs(os.path.join('.', 'data'), exist_ok=True)
data_file = os.path.join('.', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:
f.write('NumRooms,Alley,Test,Price\n')
f.write('NA,Pave,NA,127500\n')
f.write('2,D,A,106000\n')
f.write('4,NA,NA,178100\n')
f.write('NA,NA,B,14000\n') # 读取 csv 数据
data = pd.read_csv(data_file)
print("\nCSV data => \n", data)
print("-" * 60) # 检测缺失值
res_null = pd.isnull(data)
print("\nres_null => \n", res_null)
print("\nres_null.sum() => \n", res_null.sum()) # 通过位置索引iloc,将 data 分成 inputs、 outputs
inputs, outputs = data.iloc[:, 0:3], data.iloc[:, 3] print("-" * 60)

删除法

简单,但是容易造成数据的大量丢失

1、删除全为空值的行或列

data=data.dropna(axis=0,how='all')   # 只删除【全行】为缺失值的行数据
data=data.dropna(axis=1,how='all') # 只删除【全列】为缺失值的列数据

2、删除含有空值的行或列

data=data.dropna(axis=0,how='any')   # 只要【行】中有缺失值的,删除该【行】数据
data=data.dropna(axis=1,how='any') # 只要【列】中有缺失值的,删除该列数据

axis : {0或'index',1或'columns'},默认0

确定是否删除包含缺失值的行或列。

0或’index’:删除包含缺失值的行。

1或“列”:删除包含缺失值的列。

从0.23.0版开始不推荐使用:将元组或列表传递到多个轴上。只允许一个轴。

how : {'any','all'},默认为'any'

当我们有至少一个NA或全部NA时,确定是否从DataFrame中删除行或列。

'any':如果存在任何NA值,则删除该行或列。

'all':如果所有值均为NA,则删除该行或列。

thresh : int,可选

需要许多非NA值。

subset :类数组,可选

要考虑的其他轴上的标签,例如,如果要删除行,这些标签将是要包括的列的列表。

inplace : bool,默认为False

如果为True,则对数据源进行生效

示例

import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index=list('abcde'), columns=['one', 'two', 'three']) # 随机产生5行3列的数据
print(df) df.iloc[1, :] = np.nan # 将指定数据定义为缺失
df.iloc[1:-1, 2] = np.nan
print("-" * 60)
print(df) print("-" * 60)
print(df.dropna(axis=0))
import os
import pandas as pd """
删除法:
简单,但是容易造成数据的大量丢失
how = "any" 只要有缺失值就删除
how = "all" 只删除全行为缺失值的行
axis = 1 丢弃有缺失值的列(一般不会这么做,这样会删掉一个特征), 默认值为:0
""" # 添加 测试数据
data_file = os.path.join('.', 'data', 'house_tiny.csv') """
输入:
NumRooms Alley Test Price
0 NaN Pave NaN 127500.0
1 2.0 D NaN 106000.0
2 4.0 NaN NaN 178100.0
3 NaN NaN NaN NaN
输出:
NumRooms Alley Test Price
0 NaN Pave NaN 127500.0
1 2.0 D NaN 106000.0
2 4.0 NaN NaN 178100.0
"""
print("-" * 60)
with open(data_file, 'w') as f:
f.write('NumRooms,Alley,Test,Price\n')
f.write('NA,Pave,NA,127500\n')
f.write('2,D,NA,106000\n')
f.write('4,NA,NA,178100\n')
f.write('NA,NA,NA,NA\n')
data = pd.read_csv(data_file)
print("\nCSV data => \n", data)
data.dropna(how="all", axis=0, inplace=True)
print("删除之后的结果,只删除全行为缺失值的行数据: \n", data) """
输入:
NumRooms Alley Test Price
0 NaN Pave NaN 127500.0
1 2.0 D NaN 106000.0
2 4.0 NaN NaN 178100.0
3 NaN NaN NaN NaN
输出:
NumRooms Alley Price
0 NaN Pave 127500.0
1 2.0 D 106000.0
2 4.0 NaN 178100.0
3 NaN NaN NaN
"""
print("-" * 60)
data.dropna(how="all", axis=1, inplace=True)
print("删除之后的结果,只删除全列为缺失值的列数据: \n", data) """
输入:
NumRooms Alley Test Price
0 NaN Pave A 127500.0
1 2.0 D E 106000.0
2 4.0 NaN NaN 178100.0
3 NaN NaN B NaN
输出:
NumRooms Alley Test Price
1 2.0 D E 106000.0
"""
with open(data_file, 'w') as f:
f.write('NumRooms,Alley,Test,Price\n')
f.write('NA,Pave,A,127500\n')
f.write('2,D,E,106000\n')
f.write('4,NA,NA,178100\n')
f.write('NA,NA,B,NA\n')
data = pd.read_csv(data_file)
print("\nCSV data => \n", data)
print("-" * 60)
data.dropna(how="any", axis=0, inplace=True)
print("删除之后的结果,只要【行】中有缺失值的,删除该【行】数据: \n", data) """
输入:
NumRooms Alley Test Price
0 NaN Pave A 127500
1 2.0 D E 106000
2 4.0 NaN C 178100
3 NaN NaN B 14000
输出:
Test Price
0 A 127500
1 E 106000
2 C 178100
3 B 14000
"""
with open(data_file, 'w') as f:
f.write('NumRooms,Alley,Test,Price\n')
f.write('NA,Pave,A,127500\n')
f.write('2,D,E,106000\n')
f.write('4,NA,C,178100\n')
f.write('NA,NA,B,14000\n')
data = pd.read_csv(data_file)
print("\nCSV data => \n", data)
print("-" * 60)
data.dropna(how="any", axis=1, inplace=True)
print("删除之后的结果,只要【列】中有缺失值的,删除该列数据: \n", data) """
输入:
NumRooms Alley Test Price
0 NaN Pave A 127500
1 2.0 D E 106000
2 4.0 C NaN 178100
3 NaN NaN B 14000
输出:
NumRooms Alley Test Price
0 NaN Pave A 127500
1 2.0 D E 106000 """
with open(data_file, 'w') as f:
f.write('NumRooms,Alley,Test,Price\n')
f.write('NA,Pave,A,127500\n')
f.write('2,D,E,106000\n')
f.write('4,C,NA,178100\n')
f.write('NA,NA,B,14000\n')
data = pd.read_csv(data_file)
print("\nCSV data => \n", data)
print("-" * 60)
dt = data.dropna(subset=["Alley", "Test"])
print("删除之后的结果,删除 'Alley', 'Test': 有空值的行。\n", dt)

填充法

只要不影响数据分布或者对结果影响不是很大的情况

数值型 ——可以使用均值、众数、中位数来填充,也可以使用这一列的上下邻居数据来填充

类别数据(非数值型) ——可以使用众数来填充,也可以使用这一列的上下邻居数据来填充

使用众数来填充非数值型数据

fillna():使用指定的方法填充NA/NaN值。

返回值:DataFrame 缺少值的对象已填充。不改变原序列值。

参数解释

  • value :scalar(标量), dict, Series, 或DataFrame

    用于填充孔的值(例如0),或者是dict / Series / DataFrame的值,

    该值指定用于每个索引(对于Series)或列(对于DataFrame)使用哪个值。

    不在dict / Series / DataFrame中的值将不被填充。该值不能是列表(list)。
  • method : {‘backfill’,‘bfill’,‘pad’,‘ffill’,None},默认为None

    填充重新索引的系列填充板/填充中的holes的方法:

    将最后一个有效观察向前传播到下一个有效回填/填充:

    使用下一个有效观察来填充间隙。
  • axis : {0或’index’,1或’columns’}

    填充缺失值所沿的轴。

    inplace : bool,默认为False

    如果为True,则就地填充。

    注意:这将修改此对象上的任何其他视图

    (例如,DataFrame中列的无副本切片)。
  • limit : int,默认值None

    如果指定了method,

    则这是要向前/向后填充的连续NaN值的最大数量。

    换句话说,如果存在连续的NaN数量大于此数量的缺口,

    它将仅被部分填充。如果未指定method,

    则这是将填写NaN的整个轴上的最大条目数

    如果不为None,则必须大于0。
  • downcast : dict,默认为None

    item-> dtype的字典,如果可能的话,将向下转换,

    或者是字符串“infer”,

    它将尝试向下转换为适当的相等类型

    (例如,如果可能,则从float64到int64)。
import os
import pandas as pd # 添加 测试数据
data_file = os.path.join('.', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:
f.write('NumRooms,Alley,Test,Price\n')
f.write('NA,Pave,NA,127500\n')
f.write('2,D,NA,106000\n')
f.write('4,NA,NA,178100\n')
f.write('NA,NA,NA,NA\n')
data = pd.read_csv(data_file)
print("\nCSV data => \n", data)
print("-" * 60)
# 处理缺失值,替换法 - 用当前列的平均值,填充 NaN
# 通过位置索引iloc,将 data 分成 inputs、 outputs
inputs, outputs = data.iloc[:, 0:4], data.iloc[:, 3]
a = inputs.fillna(inputs.mean())
print("\ninputs.fillna => \n", a)
b = inputs.fillna(inputs.mean(), limit=1)
print("\ninputs.fillna => \n", b)

插值法

最常用的插值函数就是interp1d,按照字面意思理解就是插值一个一维函数。其必不可少的输入参数,就是将要被插值的函数的自变量和因变量,输出为被插值后的函数

而所谓插值,要求只能在特定的两个值之间插入,而对于超出定义域范围的值,是无法插入的

在无声明的情况下,插值方法默认是线性插值linear,如有其他需求,可变更kind参数来实现,可选插值方法如下:

  • 样条插值:其0、1、2、3阶插值参数分别为zero、slinear、quadratic、cubic
  • 返回单点:next和previous用于返回上一个或下一个值
  • 最邻近插值:nearest采取向下取整;nearest-up采用向上取整。
import numpy as np
import matplotlib.pyplot as plt
import scipy.interpolate as si x = np.arange(0, 10, 0.1)
y = np.sin(x)
plt.plot(x, y, 'o')
plt.show() xnew = np.arange(0, 99)/10
f = si.interp1d(x, y)
ynew = f(xnew) #调用经由interp1d返回的函数
plt.plot(x, y, 'o', xnew, ynew, '-')
plt.show()



import numpy as np
import matplotlib.pyplot as plt
import scipy.interpolate as si x = np.arange(10)
y = np.sin(x)
plt.scatter(x[1:-1],y[1:-1]) xNew = np.arange(1,9,0.1) ks = ['zero', 'slinear', 'quadratic', 'cubic']
cs = ['r', 'g', 'b', 'gray'] for i in range(4):
f = si.interp1d(x,y,kind=ks[i])
plt.plot(xNew, f(xNew), c=cs[i]) plt.show()

下图中,红、绿、蓝、灰分别代表0到3次插值,可见,尽管只有10个点,但分段的二次函数已经描绘出了三角函数的形状,其插值效果还是不错的。

import numpy as np
from scipy.interpolate import interp1d
from scipy.interpolate import lagrange
# 插值法
# 线性插值 ——你和线性关系进行插值
# 多项式插值 ——拟合多项式进行插值
# 拉格朗日多项式插值、牛顿多项式插值 # 样条插值 ——拟合曲线进行插值
# 对于线型关系,线型插值,表现良好,多项式插值,与样条插值也表现良好
# 对于非线型关系,线型插值,表现不好,多项式插值,与样条插值表现良好
# 推荐如果想要使用插值方式,使用拉格朗日插值和样条插值
x = np.array([1, 2, 3, 4, 5, 8, 9])
y = np.array([3, 5, 7, 9, 11, 17, 19])
z = np.array([2, 8, 18, 32, 50 ,128, 162]) # 线型插值
linear_1 = interp1d(x=x, y=y, kind="linear")
linear_2 = interp1d(x=x, y=z, kind="linear")
linear_3 = interp1d(x=x, y=y, kind="cubic") print("线性插值: \n", linear_1([6, 7])) # [13. 15.] 注意不是1是第一个索引
# print("线性插值: \n", linear_1([5, 6])) # [11. 13.]
print("线性插值: \n", linear_2([6, 7])) # [76. 102]
print("线性插值: \n", linear_3([6, 7])) # [76. 102] # 拉格朗日插值
la_1 = lagrange(x=x, w=y)
la_2 = lagrange(x=x, w=y) print("拉格朗日: \n", la_1) # [13, 15]
print("拉格朗日: \n", la_2) # [72, 98]

转换为张量格式

import os
import pandas as pd
import numpy as np
import paddle data_file = os.path.join('.', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:
f.write('NumRooms,Alley,Test,Price\n')
f.write('NA,Pave,NA,127500\n')
f.write('2,D,NA,106000\n')
f.write('4,NA,NA,178100\n')
f.write('NA,NA,NA,NA\n')
data = pd.read_csv(data_file) # 对于非NaN类型的数据——先将非NaN类型的数据转化为np.nan
data.replace("*", np.nan, inplace=True)
print("data: \n", data)
print(type(np.nan)) inputs, outputs = data.iloc[:, 0:4], data.iloc[:, 3]
print("-" * 60)
# 把离散的类别信息转化为 one-hot 编码形式
inputs = pd.get_dummies(inputs, dummy_na=True)
print("\none-hot => \n", inputs) # 转换为张量格式
x, y = paddle.to_tensor(inputs.values), paddle.to_tensor(outputs.values)
print("\n to_tensor => \n", x, y)

数据分析缺失值处理(Missing Values)——删除法、填充法、插值法的更多相关文章

  1. [sklearn]官方例程-Imputing missing values before building an estimator 随机填充缺失值

    官方链接:http://scikit-learn.org/dev/auto_examples/plot_missing_values.html#sphx-glr-auto-examples-plot- ...

  2. [sklearn] 官方例程-Imputing missing values before building an estimator 随机填充缺失值

    官方链接:http://scikit-learn.org/dev/auto_examples/plot_missing_values.html#sphx-glr-auto-examples-plot- ...

  3. 缺失值处理(Missing Values)

    什么是缺失值?缺失值指数据集中某些变量的值有缺少的情况,缺失值也被称为NA(not available)值.在pandas里使用浮点值NaN(Not a Number)表示浮点数和非浮点数组中的缺失值 ...

  4. kaggle数据挖掘竞赛初步--Titanic<原始数据分析&缺失值处理>

    Titanic是kaggle上的一道just for fun的题,没有奖金,但是数据整洁,拿来练手最好不过啦. 这道题给的数据是泰坦尼克号上的乘客的信息,预测乘客是否幸存.这是个二元分类的机器学习问题 ...

  5. Multi-batch TMT reveals false positives, batch effects and missing values(解读人:胡丹丹)

    文献名:Multi-batch TMT reveals false positives, batch effects and missing values (多批次TMT定量方法中对假阳性率,批次效应 ...

  6. Handling Missing Values

    1) A Simple Option: Drop Columns with Missing Values 如果这些列具有有用信息(在未丢失的位置),则在删除列时,模型将失去对此信息的访问权限. 此外, ...

  7. 【原】关于使用Sklearn进行数据预处理 —— 缺失值(Missing Value)处理

    关于缺失值(missing value)的处理 在sklearn的preprocessing包中包含了对数据集中缺失值的处理,主要是应用Imputer类进行处理. 首先需要说明的是,numpy的数组中 ...

  8. 关于缺失值(missing value)的处理---机器学习 Imputer

    关于缺失值(missing value)的处理 在sklearn的preprocessing包中包含了对数据集中缺失值的处理,主要是应用Imputer类进行处理. 首先需要说明的是,numpy的数组中 ...

  9. [Scikit-Learn] - 数据预处理 - 缺失值(Missing Value)处理

    reference : http://www.cnblogs.com/chaosimple/p/4153158.html 关于缺失值(missing value)的处理 在sklearn的prepro ...

  10. [计算机图形学] 基于C#窗口的Bresenham直线扫描算法、种子填充法、扫描线填充法模拟软件设计(二)

    上一节链接:http://www.cnblogs.com/zjutlitao/p/4116783.html 前言: 在上一节中我们已经大致介绍了该软件的是什么.可以干什么以及界面的大致样子.此外还详细 ...

随机推荐

  1. [RoarCTF 2019]Easy Calc 1

    进入主页面是一个计算器,可以计算 右键源代码发现提示信息,javascript脚本,其中还有calc.php文件 注释说明了这里引入了waf 尝试访问calc.php 是一道命令执行,尝试输入phpi ...

  2. burpsuite 设置文字大小、抓取https数据头

    设置文字大小 burpsuite安装好后,有些时候文字非常的小,看的眼睛直接痛死. 找到 User options -> Display 其中 User Interface -> Font ...

  3. 痞子衡嵌入式:MCUBootUtility v2.3.1发布,解决了长久以来非空flash可能无法下载的问题

    -- 痞子衡维护的NXP-MCUBootUtility工具距离上一个版本(v2.3)发布过去3个月了,这一次痞子衡为大家带来了小版本升级v2.3.1(第一次做x.y.z中z级别更新),这个版本主要有两 ...

  4. 关于再次报错500--Servlet报出异常

    我是根据这样的方法解决的: 本来在前几篇里面,我是将get或者post的没有用到的方法里面自带的super方法直接删除了的,然后今天运行发现,功能实现不了,还报出500的异常错误: 心态直接裂开,然后 ...

  5. Go内存管理逃逸分析

    1. 前言 所谓的逃逸分析(Escape analysis)是指由编译器决定内存分配的位置吗不需要程序员指定. 函数中申请一个新的对象 如果分配在栈中, 则函数执行结束后可自动将内存回收 如果分配在堆 ...

  6. 90 条简单实用的 Python 编程技巧,建议收藏

    编码原则 建议 1:理解 Pythonic 概念 -- 详见 Python 中的<Python 之禅> 建议 2:编写 Pythonic 代码 避免不规范代码,比如只用大小写区分变量.使用 ...

  7. ElasticSearch 实现分词全文检索 - SpringBoot 完整实现 Demo 附源码【完结篇】

    可以先看下列文章 目录 ElasticSearch 实现分词全文检索 - 概述 ElasticSearch 实现分词全文检索 - ES.Kibana.IK安装 ElasticSearch 实现分词全文 ...

  8. Spring注解系列——@PropertySource

    在Spring框架中@PropertySource注解是非常常用的一个注解,其主要作用是将外部化配置解析成key-value键值对"存入"Spring容器的Environment环 ...

  9. [数据库]MySQL之备份与恢复【未完待续】

    1 恢复 方式一 source sqlFile.sql 登陆MySQL 创建数据库db (create database db;) 进入/使用 数据库db (use db;) 将要导入的sql文件放到 ...

  10. SpringCloud源码学习笔记3——Nacos服务注册源码分析

    系列文章目录和关于我 一丶基本概念&Nacos架构 1.为什么需要注册中心 实现服务治理.服务动态扩容,以及调用时能有负载均衡的效果. 如果我们将服务提供方的ip地址配置在服务消费方的配置文件 ...