https://www.cnblogs.com/jyzhao/p/8628184.html

故障描述:与客户沟通,初步确认故障范围大概是在上午的8:30-10:30之间,反应故障现象是Tomcat的连接数满导致应用无法连接,数据库alert中无明显报错,需要协助排查原因。

1.导入包含故障时刻的数据

为了便于后续分析,我向客户索要了从昨天下午13:00到今天18:00的awrdump,导入到自己的实验环境进行分析。

生产环境导出awrdump:

@?/rdbms/admin/awrextr

测试环境导入awrdump:

SYS@jyzhao1 >select * from dba_directories;
SYS@jyzhao1 >create directory jy as '/home/oracle/awrdump';
SYS@jyzhao1 >select * from dba_directories;
SYS@jyzhao1 >!mkdir -p /home/oracle/awrdump SYS@jyzhao1 >@?/rdbms/admin/awrload
省略部分输出..
... Dropping AWR_STAGE user End of AWR Load

2.创建m_ash表,明确故障时刻

创建m_ash表:

--create table
create table m_ash20180322 as select * from dba_hist_active_sess_history where dbid=&dbid;

输入生产库对应的dbid,完成创建分析表。

select to_char(sample_time, 'yyyy-mm-dd hh24:mi'), count(1)
FROM m_ash20180322
group by to_char(sample_time, 'yyyy-mm-dd hh24:mi')
order by 1;

根据生成的数据生成折线图如下:

可以从图中明确故障时刻,即在10:00、12:30、14:10这三个时刻会话都明显上升(积压),看来客户的反馈时间点并没有包含所有异常时刻。

另外,引用下maclean的诊断脚本,可以看到核心意思差不多,只是进一步将instance_number区分开细化:

--验证导出的ASH时间范围:
select
t.dbid, t.instance_number, min(sample_time), max(sample_time), count(*) session_count
from m_ash20180322 t
group by t.dbid, t.instance_number
order by dbid, instance_number; --确认问题发生的精确时间范围:
select
dbid, instance_number, sample_id, sample_time, count(*) session_count
from m_ash20180322 t
group by dbid, instance_number, sample_id, sample_time
order by dbid, instance_number, sample_time;

3.确定异常时刻的top n event

确定每个采样点的top n event,下面也是参考maclean的脚本。 比如我这里以2018-03-22 09:59:00 - 2018-03-22 10:00:00为例:

select t.dbid,
t.sample_id,
t.sample_time,
t.instance_number,
t.event,
t.session_state,
t.c session_count
from (select t.*,
rank() over(partition by dbid, instance_number, sample_time order by c desc) r
from (select /*+ parallel 8 */
t.*,
count(*) over(partition by dbid, instance_number, sample_time, event) c,
row_number() over(partition by dbid, instance_number, sample_time, event order by 1) r1
from dba_hist_active_sess_history t
where sample_time >
to_timestamp('2018-03-22 09:59:00',
'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_timestamp('2018-03-22 10:00:00',
'yyyy-mm-dd hh24:mi:ss')
) t
where r1 = 1) t
where r < 3
order by dbid, instance_number, sample_time, r;

其他异常时刻,输入对应的变量值:

select t.dbid,
t.sample_id,
t.sample_time,
t.instance_number,
t.event,
t.session_state,
t.c session_count
from (select t.*,
rank() over(partition by dbid, instance_number, sample_time order by c desc) r
from (select /*+ parallel 8 */
t.*,
count(*) over(partition by dbid, instance_number, sample_time, event) c,
row_number() over(partition by dbid, instance_number, sample_time, event order by 1) r1
from dba_hist_active_sess_history t
where sample_time >
to_timestamp('&begin_sample_time',
'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_timestamp('&end_sample_time',
'yyyy-mm-dd hh24:mi:ss')
) t
where r1 = 1) t
where r < 3
order by dbid, instance_number, sample_time, r;

2018-03-22 12:29:00
2018-03-22 12:30:00

2018-03-22 14:09:00
2018-03-22 14:10:00

综上,3个连接数堆积的异常时刻TOP event都是 “enq: TX - row lock contention”。

4.确定最终的top holder

使用maclean的脚本,观察每个采样点的等待链:

select
level lv,
connect_by_isleaf isleaf,
connect_by_iscycle iscycle,
t.dbid,
t.sample_id,
t.sample_time,
t.instance_number,
t.session_id,
t.sql_id,
t.session_type,
t.event,
t.session_state,
t.blocking_inst_id,
t.blocking_session,
t.blocking_session_status
from m_ash20180322 t
where sample_time >
to_timestamp('2018-03-22 09:59:00',
'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_timestamp('2018-03-22 10:00:00',
'yyyy-mm-dd hh24:mi:ss')
start with blocking_session is not null
connect by nocycle
prior dbid = dbid
and prior sample_time = sample_time
/*and ((prior sample_time) - sample_time between interval '-1'
second and interval '1' second)*/
and prior blocking_inst_id = instance_number
and prior blocking_session = session_id
and prior blocking_session_serial# = session_serial#
order siblings by dbid, sample_time;

结果如下:

进一步筛选,将isleaf=1的叶(top holder)找出来:

--基于上一步的原理来找出每个采样点的最终top holder:
select t.lv,
t.iscycle,
t.dbid,
t.sample_id,
t.sample_time,
t.instance_number,
t.session_id,
t.sql_id,
t.session_type,
t.event,
t.seq#,
t.session_state,
t.blocking_inst_id,
t.blocking_session,
t.blocking_session_status,
t.c blocking_session_count
from (select t.*,
row_number() over(partition by dbid, instance_number, sample_time order by c desc) r
from (select t.*,
count(*) over(partition by dbid, instance_number, sample_time, session_id) c,
row_number() over(partition by dbid, instance_number, sample_time, session_id order by 1) r1
from (select /*+ parallel 8 */
level lv,
connect_by_isleaf isleaf,
connect_by_iscycle iscycle,
t.*
from m_ash20180322 t
where sample_time >
to_timestamp('2018-03-22 09:59:00',
'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_timestamp('2018-03-22 10:00:00',
'yyyy-mm-dd hh24:mi:ss')
start with blocking_session is not null
connect by nocycle
prior dbid = dbid
and prior sample_time = sample_time
/*and ((prior sample_time) - sample_time between interval '-1'
second and interval '1' second)*/
and prior blocking_inst_id = instance_number
and prior blocking_session = session_id
and prior
blocking_session_serial# = session_serial#) t
where t.isleaf = 1) t
where r1 = 1) t
where r < 3
order by dbid, sample_time, r;

对其他异常时段进行分析:
2018-03-22 12:29:00
2018-03-22 12:30:00

2018-03-22 14:09:00
2018-03-22 14:10:00

-- top holder: DIY sample_time
select t.lv,
t.iscycle,
t.dbid,
t.sample_id,
t.sample_time,
t.instance_number,
t.session_id,
t.sql_id,
t.session_type,
t.event,
t.seq#,
t.session_state,
t.blocking_inst_id,
t.blocking_session,
t.blocking_session_status,
t.c blocking_session_count
from (select t.*,
row_number() over(partition by dbid, instance_number, sample_time order by c desc) r
from (select t.*,
count(*) over(partition by dbid, instance_number, sample_time, session_id) c,
row_number() over(partition by dbid, instance_number, sample_time, session_id order by 1) r1
from (select /*+ parallel 8 */
level lv,
connect_by_isleaf isleaf,
connect_by_iscycle iscycle,
t.*
from m_ash20180322 t
where sample_time >
to_timestamp('&begin_sample_time',
'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_timestamp('&end_sample_time',
'yyyy-mm-dd hh24:mi:ss')
start with blocking_session is not null
connect by nocycle
prior dbid = dbid
and prior sample_time = sample_time
/*and ((prior sample_time) - sample_time between interval '-1'
second and interval '1' second)*/
and prior blocking_inst_id = instance_number
and prior blocking_session = session_id
and prior
blocking_session_serial# = session_serial#) t
where t.isleaf = 1) t
where r1 = 1) t
where r < 3
order by dbid, sample_time, r;

发现所有的异常时刻最终阻塞都是实例1的sid为3548的session,不再赘述。

5.总结

从第四步可以看到,top holder都是实例1,会话3548. 比如可以看到实例1的481会话被实例2的6377会话阻塞,然后实例2的6377会话又被实例1的3548会话阻塞。 通过sql_id可以查询到sql文本:

select * from dba_hist_sqltext where sql_id = '&sql_id';

可以看到实例1的3548会话当前正在执行的SQL只是一个查询语句,当前会话状态是ON CPU,所以推测该会话之前有DML的事物未提交导致阻塞。
去查询该会话的DML操作时,也有update和insert操作,但是update操作已经无法找到对应SQL文本。

select t.event, t.*
from m_ash20180322 t
where instance_number = 1
and session_id = 3548
and t.sql_opname <> 'SELECT';

其实从ash也可以看到关于3548阻塞的信息,甚至从addm的建议中也会有类似建议:

   Rationale
The session with ID 3548 and serial number 8795 in instance number 1 was
the blocking session responsible for 52% of this recommendation's
benefit.
Rationale
The session with ID 6377 and serial number 30023 in instance number 2
was the blocking session responsible for 47% of this recommendation's
benefit.

只不过我们从底层查询,可以看到6377实际也是被3548阻塞,找到最终阻塞者。

btw,从导入的awrdump中,除了可以取awr外,同样可以支持取awrsqrpi和addmrpti以及ashrpti,非常方便:

SYS@jyzhao1 >@?/rdbms/admin/awrrpti
SYS@jyzhao1 >@?/rdbms/admin/awrsqrpi
SYS@jyzhao1 >@?/rdbms/admin/ashrpti
SYS@jyzhao1 >@?/rdbms/admin/addmrpti

6.reference

- http://feed.askmaclean.com/archives/dba_hist_active_sess_history.html

[转帖]记录一则enq: TX - row lock contention的分析过程的更多相关文章

  1. 记录一则enq: TX - row lock contention的分析过程

    故障描述:与客户沟通,初步确认故障范围大概是在上午的8:30-10:30之间,反应故障现象是Tomcat的连接数满导致应用无法连接,数据库alert中无明显报错,需要协助排查原因. 1.导入包含故障时 ...

  2. 解决一则enq: TX – row lock contention的性能故障

    上周二早上,收到项目组的一封邮件: 早上联代以下时间点用户有反馈EDI导入"假死",我们跟踪了EDI导入服务,服务是正常在跑,可能是处理的慢所以用户感觉是"假死" ...

  3. ORACLE等待事件:enq: TX - row lock contention

    enq: TX - row lock contention等待事件,这个是数据库里面一个比较常见的等待事件.enq是enqueue的缩写,它是一种保护共享资源的锁定机制,一个排队机制,先进先出(FIF ...

  4. Tuning “enq:TX – row lock contention” events

    enq是一种保护共享资源的锁定机制,一个排队机制 排它机制从一个事务的第一次改变直到rollback or commit 结束这个事务, TX等待mode是6,当一个session 在一个表的行级锁定 ...

  5. AWR之-enq TX - row lock contention的性能故障-转

    1 对这一个小时进行AWR的收集和分析,首先,从报告头中看到DB Time达到近500分钟,(DB Time)/Elapsed=8,这个比值偏高:   Snap Id Snap Time Sessio ...

  6. enq: TX - row lock contention故障处理一则

    一个非常easy的问题,之所以让我对这个问题进行总结.一是由于没我想象的简单,在处理的过程中遇到了一些磕磕碰碰,甚至绕了一些弯路.二是引发了我对故障处理时的一些思考. 6月19日,下午5点左右.数据库 ...

  7. 记一则update 发生enq: TX - row lock contention 的处理方法

    根据事后在虚拟机中复现客户现场发生的情况,做一次记录(简化部分过程,原理不变) 客户端1执行update语句 SQL> select * from test; ID NAME --------- ...

  8. ORACLE AWR结合ASH诊断分析enq: TX - row lock contention

    公司用户反馈一系统在14:00~15:00(2016-08-16)这个时间段反应比较慢,于是生成了这个时间段的AWR报告, 如上所示,通过Elapsed Time和DB Time对比分析,可以看出在这 ...

  9. 大表建立索引引发enq: TX - row lock contention等待

    今天要给一张日志表(6000w数据)建立索引,导致生产系统行锁部分功能卡住 create index idx_tb_cid on tb_login_log(user_id); 开始执行后大概花费了20 ...

  10. enq: TX - row lock contention 参数P1,P2,P3说明

    enq: TX - row lock contention三个参数,例如,下面的等待事件 * P1 = name|mode          <<<<<<< ...

随机推荐

  1. 手写spring的ioc的流程截图(笔记-1)

    spring ioc是什么? IoC 容器是 Spring 的核心,也可以称为 Spring 容器.Spring 通过 IoC 容器来管理对象的实例化和初始化,以及对象从创建到销毁的整个生命周期. S ...

  2. quill富文本编辑器quill粘贴图片上传服务器

    强大的富文本编辑器:quill github:32k start++,:https://github.com/quilljs/quill quill粘贴图片上传服务器 <link href=&q ...

  3. 用AI在本地给.NET设计几张壁纸

    AI是当今和未来非常重要的技术领域之一,它在各个行业都有广泛的应用,如医疗保健.金融.教育.制造业等.学习AI可以让你了解和掌握未来技术发展的核心,并为未来的职业发展做好准备.现在有很多开源的Mode ...

  4. 密码加密处理MD5与Salt

    作用:一般用来加密或者签名(校验和) 特点: MD5算法不可逆如何内容相同无论执行多少次md5生成结果始终是一致 生成结果:始终是一个16进制32位长度字符串 //使用MD5 + salt +hash ...

  5. 科技抗疫,少年可期,为这群有AI的天使开发者疯狂打call

    摘要:2020年初新冠突发,在这场抗疫的战斗中,让我们深刻体会到,疫情与每一个人息息相关.有这样一群来自华中科技大学的师生项目团队,他们利用AI技术,助力全球抗疫,他们是怎么做的呢?让我们一起来看看吧 ...

  6. 动手实践丨基于ModelAtrs使用A2C算法制作登月器着陆小游戏

    摘要:在本案例中,我们将展示如何基于A2C算法,训练一个LunarLander小游戏. 本文分享自华为云社区<使用A2C算法控制登月器着陆>,作者:HWCloudAI . LunarLan ...

  7. 干货来了!阿里发布近300页Flink实战电子书

    近300页实用干货总结,帮你解决 Flink 实战应用难题!<Apache Flink电子书合辑>收录来自bilibili.美团点评.小米.OPPO.快手.Lyft.Netflix等一线大 ...

  8. 火山引擎 DataTester 首推 A/B 实验经验库,帮助企业高效优化实验设计能力

      更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 近日,火山引擎 DataTester 推出了重要功能--A/B 实验经验库. 基于在字节跳动已完成 150 万 ...

  9. PPT 笔刷:让你的PPT充满视觉冲击

    其实就是下载的AI效果 辅助文字展示 辅助图片展示 创意展示图片,增强视觉冲击力 使用 删除外面的边框 https://www.bilibili.com/video/BV1ha411g7f5?p=16

  10. 初探: 通过pyo3用rust为python写扩展加速

    众所周知,python性能比较差,尤其在计算密集型的任务当中,所以机器学习领域的算法开发,大多是将python做胶水来用,他们会在项目中写大量的C/C++代码然后编译为so动态文件供python加载使 ...