首先声明,LightGBM是针对大规模数据(样本量多,特征多)时,对XGBoost算法进行了一些优化,使得速度有大幅度提高,但由于优化方法得当,而精度没有减少很多或者变化不大,理论上还是一个以精度换速度的目的。如果数据量不大,那就对XGBoost没有什么优势了。

我认为有这几点:

1.GOSS(Gradient-based One-Side Sampling),基于梯度的单侧采样,对训练样本的采样。

如原始训练数据100w,高梯度数据有1w,那么会计算 1w+随机选择b%*余下的99w数据,然后把后部分数据进行加倍(*(1-a)/b),基于这些数据来得到特征的切分点。

2.EFB(Exclusive Feature Bundling),排斥特征整合,通过对某些特征整合来降低特征数量。

上面两点是在原论文中多次提到的,主要的不同。

参考原论文:https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf

其它的我认为还有两点:

3.查找连续变量 切分点 的方法

XGBoost默认使用的是pre-sorted algorithm,即先将连续变量排序,然后从前向后计算每个切分点后的信息增益,这样算法复杂度是#data*#feature。好像也可以支持使用histogram。

LightGBM使用的是histogram-based algorithms,即将连续值先bin成k箱,然后再求切分点,每次计算切分点的复杂度是#k*#feature,但这样会有一些精度损失。但由于,a粗精度可以相当于正则化的效果,防止过拟合。b单棵树的精度可能会差一些,但在gbdt框架下,总体的效果不一定差。c在gbdt中决策树是弱模型,精度不高影响也不大。

4.树的生长方式

XGBoost是level(depdh)-wise,即左右子树都是一样深的,要生长一块生长,要停一块停。

LightGBM是leaf-wise,即可能左右子树是不一样深的,即使左子树已经比右子树深很多,但只要左子树的梯度划分仍然比右子树占优,就继续在左子树进行划分。

5、对类别特征的支持

实际上大多数机器学习工具都无法直接支持类别特征,一般需要把类别特征,转化到多维的0/1 特征,降低了空间和时间的效率。而类别特征的使用是在实践中很常用的。基于这个考虑,LightGBM 优化了对类别特征的支持,可以直接输入类别特征,不需要额外的0/1 展开。并在决策树算法上增加了类别特征的决策规则。在 Expo 数据集上的实验,相比0/1 展开的方法,训练速度可以加速 8 倍,并且精度一致。据我们所知,LightGBM 是第一个直接支持类别特征的 GBDT 工具。
参考:https://blog.csdn.net/friyal/article/details/82756777

lightGBM原理

LightGBM和XGBoost的区别?的更多相关文章

  1. 随机森林RF、XGBoost、GBDT和LightGBM的原理和区别

    目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision T ...

  2. LightGBM大战XGBoost,谁将夺得桂冠?

    引 言 如果你是一个机器学习社区的活跃成员,你一定知道 提升机器(Boosting Machine)以及它们的能力.提升机器从AdaBoost发展到目前最流行的XGBoost.XGBoost实际上已经 ...

  3. GBDT XGBOOST的区别与联系

    Xgboost是GB算法的高效实现,xgboost中的基学习器除了可以是CART(gbtree)也可以是线性分类器(gblinear). 传统GBDT以CART作为基分类器,xgboost还支持线性分 ...

  4. 机器学习算法中GBDT和XGBOOST的区别有哪些

    首先xgboost是Gradient Boosting的一种高效系统实现,并不是一种单一算法.xgboost里面的基学习器除了用tree(gbtree),也可用线性分类器(gblinear).而GBD ...

  5. RF,GBDT,XGBoost,lightGBM的对比

    转载地址:https://blog.csdn.net/u014248127/article/details/79015803 RF,GBDT,XGBoost,lightGBM都属于集成学习(Ensem ...

  6. XGBoost、LightGBM、Catboost总结

    sklearn集成方法 bagging 常见变体(按照样本采样方式的不同划分) Pasting:直接从样本集里随机抽取的到训练样本子集 Bagging:自助采样(有放回的抽样)得到训练子集 Rando ...

  7. 机器学习-树模型理论(GDBT,xgboost,lightBoost,随机森林)

    tree based ensemble algorithms 主要介绍以下几种ensemble的分类器(tree based algorithms) xgboost lightGBM: 基于决策树算法 ...

  8. xgboost gbdt特征点分烈点

    lightGBM与XGBoost的区别:(来源于:http://baijiahao.baidu.com/s?id=1588002707760744935&wfr=spider&for= ...

  9. L2R 三:常用工具包介绍之 XGBoost与LightGBM

    L2R最常用的包就是XGBoost 和LightGBM,xgboost因为其性能及快速处理能力,在机器学习比赛中成为常用的开源工具包, 2016年微软开源了旗下的lightgbm(插句题外话:微软的人 ...

随机推荐

  1. 查询内核符号链接的信息的API

    NtOpenSymbolicLinkObject和NtQuerySymbolicLinkObject获取指定符号链接的信息 版权声明:本文为博主原创文章,未经博主允许不得转载.

  2. JavaEE--JNDI(下,实现)

    参考:https://blog.csdn.net/ouyida3/article/details/46699023  https://www.landui.com/help/show-6158.htm ...

  3. zabbix监控一个机器上的多个java进程的jvm

    一.监控安装部署 1.1 JVM端口配置 (/bqhexin/tomcat/bin/catalina.sh)在安装的tomcat路径,找到catalina.sh文件. vim编辑并添加: catali ...

  4. 最短路问题--P4779 单源最短路(标准版)Dijkstra堆优化

    题目背景 2018 年7月 19 日,某位同学在 NOI Day 1 T1 归程 一题里非常熟练地使用了一个广为人知的算法求最短路. 最终,他因此没能与理想的大学达成契约. 小 F 衷心祝愿大家不再重 ...

  5. winform集成cefSharp,与页面进行交互

    /// <summary> /// 为了使网页能够与winForm交互 将 com 的可访问性设置为 true /// </summary> [System.Runtime.I ...

  6. python logging的输出

    ---恢复内容开始--- python中logging的使用 什么是日志: 日志是一种可以追踪某些软件运行时所发生事件的方法 软件开发人员可以向他们的代码中调用日志记录相关的方法来表明发生了某些事情 ...

  7. GitHub的学习和使用

    大二寒假阶段: 今天初学了GitHub,并下载了git base,在如下大佬给的链接下并完成了新用户的注册以及项目的上传学习. 网站的新用户注册界面:                https://g ...

  8. 18 11 11 网络通信大都数使用的方式 socket

    ---恢复内容开始--- 浏览器  和 聊天工具  一般都用socket socket  在不同的  语言中的使用流程都大同小异    收  发  关闭 import socket def len() ...

  9. 离群点检测(Novelty Detection, Outlier Detenction)

    适合问题: 对于无标签的数据, 又想找出坏用户,完成业务目标. 参考: https://scikit-learn.org/stable/modules/outlier_detection.html 算 ...

  10. JQuery局部刷新与全页面刷新

    局部刷新: 这个方法就多了去了,常见的有以下几种: $.get方法,$.post方法,$.getJson方法,$.ajax方法如下 前两种使用方法基本上一样 $.get(”Default.php”, ...