用分类算法进行上证指数涨跌预测。

根据今天以前的150个交易日的数据,预测今日股市涨跌。

交叉验证的思想:将数据集D划分为k个大小相似的互斥子集,每个子集都尽可能保持数据分布的一致性,即从D中通过分层抽样来得到。然后,每次用k-1个子集的并集作为训练集,余下的那个子集作为测试集。这样可以获得k组训练/测试集,从而可进行k次训练/测试,最终返回的是这k个测试结果的均值。通常称为"k者交叉验证",常用取值是10。

# coding:utf-8
# 用分类算法预测股市涨跌 import pandas as pd
import numpy as np
from sklearn import svm
from sklearn.model_selection import train_test_split
import tushare as ts if __name__ == "__main__":
# 读取股票数据
data = pd.read_csv("HS300_his.csv")
print(data.head())
data.sort_index(0,ascending=True,inplace=True)
print(data.head())
dayfeature = 150
featurenum = 4*dayfeature
x = np.zeros((data.shape[0] - dayfeature, featurenum + 1))
y = np.zeros((data.shape[0] - dayfeature))
for i in range(0, data.shape[0] - dayfeature):
x[i, 0:featurenum] = np.array(data[i:i+dayfeature][["close", "open", "low", "high"]]).reshape((1, featurenum))
x[i, featurenum] = data.ix[i + dayfeature]["open"]
for i in range(0, data.shape[0] - dayfeature):
if data.ix[i + dayfeature]["close"] >= data.ix[i + dayfeature]["open"]:
y[i] = 1
else:
y[i] = 0
# 建模
clf = svm.SVC(kernel = "rbf")
result = []
for i in range(5):
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
clf.fit(x_train, y_train)
result.append(np.mean(y_test == clf.predict(x_test)))
print("用rbf核函数的预测准确率:")
print(result) clf = svm.SVC(kernel = "sigmoid")
result = []
for i in range(5):
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
clf.fit(x_train, y_train)
result.append(np.mean(y_test == clf.predict(x_test)))
print("用sigmoid核函数的预测准确率:")
print(result)

预测结果

用rbf核函数的预测准确率: [0.6842105263157895, 0.5263157894736842, 0.47368421052631576, 0.47368421052631576, 0.5263157894736842]

用sigmoid核函数的预测准确率: [0.47368421052631576, 0.6842105263157895,

0.5263157894736842, 0.42105263157894735, 0.5789473684210527]

可以看到预测成功率50%左右,跟瞎猜差不多。

本文代码:

https://github.com/zwdnet/MyQuant/blob/master/30

我发文章的四个地方,欢迎大家在朋友圈等地方分享,欢迎点“在看”。

我的个人博客地址:https://zwdnet.github.io

我的知乎文章地址: https://www.zhihu.com/people/zhao-you-min/posts

我的博客园博客地址: https://www.cnblogs.com/zwdnet/

我的微信个人订阅号:赵瑜敏的口腔医学学习园地

量化投资学习笔记31——《Python机器学习应用》课程笔记05的更多相关文章

  1. 量化投资学习笔记07——python知识补漏

    看<量化投资:以python为工具>这本书,第一部分是python的基础知识.这一部分略读了,只看我还不知道或不熟的. 定义复数 x = complex(2, 5) #2+5j 也可以直接 ...

  2. 量化投资学习笔记01——初识Pyalgotrade量化交易回测框架

    年初学习量化投资,一开始想自己从头写,还是受了C/C++的影响.结果困在了计算回测数据那里,结果老也不对,就暂时放下了.最近试了一下python的各个量化投资框架,发现一个能用的——pyalgotra ...

  3. 【机器学习笔记】Python机器学习基本语法

    本来算法没有那么复杂,但如果因为语法而攻不下就很耽误时间.于是就整理一下,搞python机器学习上都需要些什么基本语法,够用就行,可能会持续更新. Python四大类型 元组tuple,目前还没有感受 ...

  4. 吴恩达《机器学习》课程笔记——第六章:Matlab/Octave教程

    上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matl ...

  5. 操作系统学习笔记----进程/线程模型----Coursera课程笔记

    操作系统学习笔记----进程/线程模型----Coursera课程笔记 进程/线程模型 0. 概述 0.1 进程模型 多道程序设计 进程的概念.进程控制块 进程状态及转换.进程队列 进程控制----进 ...

  6. 机器学习入门 - Google机器学习速成课程 - 笔记汇总

    机器学习入门 - Google机器学习速成课程 https://www.cnblogs.com/anliven/p/6107783.html MLCC简介 前提条件和准备工作 完成课程的下一步 机器学 ...

  7. css笔记 - 张鑫旭css课程笔记之 float 篇

    https://www.imooc.com/t/197450float float的设计初衷/原本作用-是为了实现文字环绕效果如,一个图片和一段文字垂直放置,给图片加上浮动,文字就环绕图片展示了. 浮 ...

  8. 量化投资学习笔记27——《Python机器学习应用》课程笔记01

    北京理工大学在线课程: http://www.icourse163.org/course/BIT-1001872001 机器学习分类 监督学习 无监督学习 半监督学习 强化学习 深度学习 Scikit ...

  9. 量化投资学习笔记29——《Python机器学习应用》课程笔记03

    聚类的实际应用,图像分割. 利用图像的特征将图像分割为多个不相重叠的区域. 常用的方法有阈值分割,边缘分割,直方图法,特定理论(基于聚类,小波分析等). 实例:利用k-means聚类算法对图像像素点颜 ...

随机推荐

  1. Debian8.8解决双系统访问windows磁盘时,有时能成功挂载,有时不能成功挂载的情况

    1.确保在debian下安装了挂载工具.2.进入windows关闭windows快速启动功能,关闭办法是控制面板,在电源管理中,选择关闭盖子的功能,点击“更改不能更改的选项”,去掉快速启动的钩,重启进 ...

  2. codeforce 1189C Candies! ----前缀和

    题目大意:给你一个数组每个数不大于9,然后给你m个区间,每个区间的长度都是2的k次方(k=0 1 2.....)  有一种操作是把奇数位和偶数位相加  用和来代替之前的两个数,如果和大于等于10就要膜 ...

  3. 关于前端CSS的总结

    CSS语法 CSS语言的基本单位是样式声明:propertyName : value ; CSS语言的使用方式: 1.把CSS样式声明作为HTML标签的style属性值.2.使用CSS选择器 CSS常 ...

  4. Opencv笔记(十三)——图像的梯度

    目标 认识图像梯度.边界 学习函数cv2.Sobel(),cv2.Schar(),cv2.Laplacian() 原理 图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导.Op ...

  5. 【线段树】Interval GCD

    题目描述 给定一个长度为N的数列A,以及M条指令 (N≤5*10^5, M<=10^5),每条指令可能是以下两种之一: "C l r d",表示把 A[l],A[l+1],- ...

  6. Linux服务器性能查看命令

    一.uptime命令 [root@#test~]# uptime15:26:42 up 101 days, 18:44,  3 users,  load average: 0.18, 0.22, 0. ...

  7. npm 切换成淘宝镜像

    npm install nrm -g nrm use taobao

  8. Python - 使用 xlwt 写入表格

    # -*- coding: utf-8 -*- import xlwt def write_excel(): f = xlwt.Workbook() fenlei = ['一类','二类','三类', ...

  9. 复杂的Polygon

  10. 执行PHP -m报错Xdebug MUST be loaded as a Zend extension

    Xdebug扩展安装后执行PHP -m报错: <br /><b>Warning</b>: Xdebug MUST be loaded as a Zend exten ...