Q - Marriage Match IV

Do not sincere non-interference。 Like that show, now starvae also

take part in a show, but it take place between city A and B. Starvae

is in city A and girls are in city B. Every time starvae can get to

city B and make a data with a girl he likes. But there are two

problems with it, one is starvae must get to B within least time, it’s

said that he must take a shortest path. Other is no road can be taken

more than once. While the city starvae passed away can been taken more

than once.

So, under a good RP, starvae may have many chances to get to city B.

But he don’t know how many chances at most he can make a data with the

girl he likes . Could you help starvae? Input The first line is an

integer T indicating the case number.(1<=T<=65) For each case,there

are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 )

,n is the number of the city and m is the number of the roads.

Then follows m line ,each line have three integers

a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and

it’s distance is c, while there may have no road from b to a. There

may have a road from a to a,but you can ignore it. If there are two

roads from a to b, they are different.

At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the

number of city A and city B. There may be some blank line between

each case. Output Output a line with a integer, means the chances

starvae can get at most. Sample Input

3
7 8
1 2 1
1 3 1
2 4 1
3 4 1
4 5 1
4 6 1
5 7 1
6 7 1
1 7 6 7
1 2 1
2 3 1
1 3 3
3 4 1
3 5 1
4 6 1
5 6 1
1 6 2 2
1 2 1
1 2 2
1 2
Sample Output
2
1
1
  • 题意:一个人 从 城市 A 到 B 的最短路径有几条,这里特别需要注意:每条路经只能走一次,走过之后就不能再走了,而且只能走最短的路径
  • 思路:把不是最组成短路径(这里 最短路可能有多条)点边剔除掉,把剩余的边重新建图,边权设置为1,跑一遍最大流。

    那么我们我现在要解决的问题是怎么判断某一条边 是组成最短路径的边呢?

    我们先做一些假设:
  1. 假设要判断的边是 (u ,v),其长度是 w(u,v),假设图的 源点为 s 、汇点为 e。
  2. 正向跑最短路 的到的从 s 到其他点的最短距离存放在 dis1[ ] 数组中,

    dis[ u ] 为s到u的最短距离;
  3. 逆向跑最短路(但是带到权值还是 正向的权值) 的到的从 e 到其他点的最短距离存放在 dis2[ ] 数组中,dis[ v ] 为u到e (注意这个方向是u到v)的最短距离
  • 最后我们只要在遍历所给的每一条边时:

    如果 dis1[ u ] + w(u, v) + dis2[ v ] = dis1[ e ] 成立。那么我们就可判断这条边就是组成最短的路径的边。

    最后把这些 边新建图跑最大流,就能得出 路径方案数了。
  • 其实剩下的我们还要考虑一下:为什么最大流跑出来的就是我们所要的 答案?????????

题解(Spfa + ISAP)

#include<iostream>
#include<queue>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std; #define INF 0x3f3f3f3f
const int maxn = 10005;
const int maxm = 200005; struct Edge
{
int v,w,next;
} edge1[maxm], edge2[maxm], edge[maxm];
int n,m,s,e;
int head1[maxn], head2[maxn], head[maxn];
int dis1[maxn], dis2[maxn];
int use[maxn]; int k1,k2,k;
void Add(int u, int v, int w, int head[], int & k, Edge edge[])
{
edge[++ k] = (Edge){ v, w, head[u]}; head[u] = k;
} void Spfa(int s, int dis[], int head[], Edge edge[])
{
for(int i = 1; i <= n; i ++)
dis[i] = INF,use[i] = 0;
dis[s] = 0;
queue<int> q;
q.push(s);
int u,v,w;
while(! q.empty())
{
u = q.front();
q.pop();
use[u] = 0; for(int i = head[u]; i != -1; i = edge[i].next)
{
v = edge[i].v;
w = edge[i].w;
if(dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if(! use[v])
{
q.push(v);
use[v] = 1;
}
}
}
}
} int deep[maxn], num[maxn];
int cur[maxn], last[maxm]; void bfs(int e)
{
for(int i = 0; i <= n; i ++)
deep[i] = n, cur[i] = head[i], use[i] = 0;
deep[e] = 0;
queue<int> q;
q.push(e);
int u, v;
while(! q.empty())
{
u = q.front(); q.pop();
// use[u] = 0; for(int i = head[u]; i != -1; i = edge[i].next)
{
v = edge[i].v;
if(edge[i^1].w && deep[v] == n) //正图 边存在 且 v这个节点没有被求过
{
deep[v] = deep[u] + 1;
q.push(v);
// if(! use[v])
// {
// q.push(v);
// use[v] = 1;
// }
}
}
}
} int Add_flow(int s, int e)
{
int ans = INF;
int now = e;
while(now != s)
{
ans = min(ans, edge[last[now]].w);
now = edge[last[now]^1].v;
}
now = e;
while(now != s)
{
edge[last[now]].w -= ans;
edge[last[now]^1].w += ans;
now = edge[last[now]^1].v;
}
return ans;
} int isap(int s, int e)
{
int now = s; //从起点开始进行操作
bfs(e); //先找出来一条边 被操作的增光路
for(int i = 1; i <= n; i ++) num[deep[i]] ++;
int mx_flw = 0;
while(deep[s] < n)
{
if(now == e) //如果到达汇点直接增广,重新回到源点进行下一轮增广
{
mx_flw += Add_flow(s, e);
now = s;
}
bool has_find = 0;
for(int i = cur[now]; i != -1; i = edge[i].next)
{
if(edge[i].w && deep[now] == deep[edge[i].v] + 1)
{
has_find = 1; //做标记已经找到一种可行路径
cur[now] = i; //优化当前弧
now = edge[i].v;
last[edge[i].v] = i;
break;
}
} if(! has_find)
{
int minn = n - 1;
for(int i = head[now]; i != -1; i = edge[i].next)
if(edge[i].w)
minn = min(minn, deep[edge[i].v]);
if( (-- num[deep[now]]) == 0) break; //gap 优化出现了断层
num[deep[now] = minn + 1] ++;
cur[now] = head[now];
if(now != s)
now = edge[last[now]^1].v;
}
}
return mx_flw;
} void init()
{
k1 = 0; k2 = 0; k = -1;
for(int i = 0; i <= n; i ++)
head1[i] = -1, head2[i] = -1, head[i] = -1; memset(num, 0, sizeof(num));
} int main()
{
//freopen("T.txt","r",stdin);
int t;
scanf("%d", &t);
while(t --)
{
scanf("%d %d", &n, &m);
init();
int u, v, w;
for(int i = 1; i <= m; i ++)
{
scanf("%d %d %d", &u, &v, &w);
Add(u, v, w, head1, k1, edge1);
Add(v, u, w, head2, k2, edge2);
}
scanf("%d %d", &s, &e);
Spfa(s, dis1, head1, edge1);
Spfa(e, dis2, head2, edge2); //遍历图中所有的边 去找组成所有最短了的边都有哪些
for(int i = 1; i <= m; i ++)
{
u = edge2[i].v;
v = edge1[i].v;
w = edge1[i].w;
if(dis1[u] + w + dis2[v] == dis1[e])
{
Add(u, v, 1, head, k, edge);
Add(v, u, 0, head, k, edge);
}
}
printf("%d\n", isap(s, e));
} reurn 0;
}

Q - Marriage Match IV (非重复最短路 + Spfa + 网络最大流Isap)的更多相关文章

  1. HDU 3416 Marriage Match IV (求最短路的条数,最大流)

    Marriage Match IV 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/Q Description Do not si ...

  2. P3376 【模板】网络最大流——————Q - Marriage Match IV(最短路&最大流)

    第一道题是模板题,下面主要是两种模板,但都用的是Dinic算法(第二个题也是) 第一题: 题意就不需要讲了,直接上代码: vector代码: 1 //invalid types 'int[int]' ...

  3. hdu 3416 Marriage Match IV (最短路+最大流)

    hdu 3416 Marriage Match IV Description Do not sincere non-interference. Like that show, now starvae ...

  4. Marriage Match IV(最短路+网络流)

    Marriage Match IV http://acm.hdu.edu.cn/showproblem.php?pid=3416 Time Limit: 2000/1000 MS (Java/Othe ...

  5. HDU 3416 Marriage Match IV (最短路径,网络流,最大流)

    HDU 3416 Marriage Match IV (最短路径,网络流,最大流) Description Do not sincere non-interference. Like that sho ...

  6. HDU3605:Marriage Match IV

    Marriage Match IV Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  7. HDU3416 Marriage Match IV —— 最短路径 + 最大流

    题目链接:https://vjudge.net/problem/HDU-3416 Marriage Match IV Time Limit: 2000/1000 MS (Java/Others)    ...

  8. HDU 3416 Marriage Match IV(ISAP+最短路)题解

    题意:从A走到B,有最短路,问这样不重复的最短路有几条 思路:先来讲选有效边,我们从start和end各跑一次最短路,得到dis1和dis2数组,如果dis1[u] + dis2[v] + cost[ ...

  9. SPFA+Dinic HDOJ 3416 Marriage Match IV

    题目传送门 题意:求A到B不同最短路的条数(即边不能重复走, 点可以多次走) 分析:先从A跑最短路,再从B跑最短路,如果d(A -> u) + w (u, v) + d (B -> v) ...

随机推荐

  1. python实验一

    安徽工程大学 Python程序设计实验报告 班级物流管理191 姓名彭艺    学号3190505139成绩          日期  2020年3月3日     指导老师    修宇 实验名称    ...

  2. UIButton左边图片右边文字的做法

    UIImage *yuyinImage = [UIImage imageNamed:@"yuyin.png"]; [soundButton setImage:yuyinImage ...

  3. 简述树,Trie,Avl,红黑树

    树的表示方法 在平时工作中通常有2种方式来表示树状结构,分别是孩子链表示法和父节点表示法.光说名词可能无法让人联系到实际场景中,但是写出代码之后大家一定就明白了. 孩子链表示法,即将树中的每个结点的孩 ...

  4. 何为引用法---细谈C++引用

    何为引用...给已有的变量取别名 ; int &a = num;//此处 &不是取地址 而是标明 a是引用变量(a 是 num的别名) 注意: 1.引用必须初始化 2.引用一旦初始化 ...

  5. 使用vue构建一个可视化大数据平台

    使用vue全家桶以及v-charts和datav实现一个github可视化大数据界面展示,没有设计搞的原因,只能忽略设计编写一下界面, 用户只需要登录的时候填写自己github用户名.就可以看到数据展 ...

  6. Java-用集合存储对象(新手)

    //导入的包.import java.util.ArrayList;//用集合存储对象,遍历集合,取所有元素. 用get方法.//创建的一个类.public class zylx4 { //公共静态的 ...

  7. 安装SQL Server 2008R2 报错“此计算机上安装了 Microsoft Visual Studio 2008 的早期版本”解决方法

    安装SQL Server 2008 R2报错“此计算机上安装了 Microsoft Visual Studio 2008 的早期版本,请在安装 SQL Server 2008 前将 VS2008 升级 ...

  8. ubuntu 16.04安装mysql server入门

    1.安装mysql-server -> sudo apt-get install mysql-server 输入root密码即可 2.修改服务器配置 默认mysql-server只对本机访问,新 ...

  9. STM32CubeMx——串口收发

    生成代码 1.配置串口1 2.选择模式 3.开中断 4.其他的RCC.调试都一样,弄完直接生成代码. 串口发送 1.定义一个用来测试的数组并初始化 /* USER CODE BEGIN 0 */ ui ...

  10. OpenCV-Python 直方图-4:直方图反投影 | 二十九

    目标 在本章中,我们将学习直方图反投影. 理论 这是由Michael J. Swain和Dana H. Ballard在他们的论文<通过颜色直方图索引>中提出的. 用简单的话说是什么意思? ...