PTA数据结构与算法题目集(中文) 7-34
PTA数据结构与算法题目集(中文) 7-34
假定一个工程项目由一组子任务构成,子任务之间有的可以并行执行,有的必须在完成了其它一些子任务后才能执行。“任务调度”包括一组子任务、以及每个子任务可以执行所依赖的子任务集。
比如完成一个专业的所有课程学习和毕业设计可以看成一个本科生要完成的一项工程,各门课程可以看成是子任务。有些课程可以同时开设,比如英语和C程序设计,它们没有必须先修哪门的约束;有些课程则不可以同时开设,因为它们有先后的依赖关系,比如C程序设计和数据结构两门课,必须先学习前者。
但是需要注意的是,对一组子任务,并不是任意的任务调度都是一个可行的方案。比如方案中存在“子任务A依赖于子任务B,子任务B依赖于子任务C,子任务C又依赖于子任务A”,那么这三个任务哪个都不能先执行,这就是一个不可行的方案。你现在的工作是写程序判定任何一个给定的任务调度是否可行。
输入格式:
输入说明:输入第一行给出子任务数N(≤),子任务按1~N编号。随后N行,每行给出一个子任务的依赖集合:首先给出依赖集合中的子任务数K,随后给出K个子任务编号,整数之间都用空格分隔。
输出格式:
如果方案可行,则输出1,否则输出0。
输入样例1:
12
0
0
2 1 2
0
1 4
1 5
2 3 6
1 3
2 7 8
1 7
1 10
1 7
输出样例1:
1
输入样例2:
5
1 4
2 1 4
2 2 5
1 3
0
输出样例2:
0
题目分析:一道利用拓扑排序的题 考察的是拓扑排序的定义
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<string.h>
#include<malloc.h> typedef struct ENode* Edge;
struct ENode
{
int V1, V2;
}; typedef struct GNode* Graph;
struct GNode
{
int G[][];
int Nv;
int Ne;
}; int IsEdge(Graph Gra, int V1, int V2)
{
return Gra->G[V1][V2];
} void Insert(Graph Gra, Edge E)
{
Gra->G[E->V1][E->V2] = ;
} Graph CreateGraph(int Nv)
{
Graph Gra = (Graph)malloc(sizeof(struct GNode));
Gra->Nv = Nv;
Gra->Ne = ;
for (int i = ; i <=Gra->Nv; i++)
for (int j = ; j <=Gra->Nv; j++)
Gra->G[i][j] = ;
return Gra;
} int Queue[];
int Rear = ;
int Front = ;
int Size = ;
int Succ(int Num)
{
if (Num == )
return ;
else
return Num;
} int IsEmpty()
{
return Size == ;
} void EnQueue(int Num)
{
Rear = Succ(Rear + );
Queue[Rear] = Num;
Size++;
} int DeQueue()
{
int Num = Queue[Front];
Front = Succ(Front + );
Size--;
return Num;
} int InDegree[];
int Collected[];
int Judget(Graph Gra)
{
for (int i = ; i <=Gra->Nv; i++)
for (int j = ; j <=Gra->Nv; j++)
if (IsEdge(Gra, i, j))
InDegree[j]++;
for(int i=;i<=Gra->Nv;i++)
if (!InDegree[i])
{
EnQueue(i);
Collected[i] = ;
}
while (!IsEmpty())
{
int V = DeQueue();
for(int i=;i<=Gra->Nv;i++)
if(!Collected[i]&&IsEdge(Gra,V,i))
if (--InDegree[i] == )
{
EnQueue(i);
Collected[i] = ;
}
}
for (int i = ; i <= Gra->Nv; i++)
if (!Collected[i])
return ;
return ;
}
int main()
{
int N;
scanf("%d", &N);
Graph Gra = CreateGraph(N);
Edge E = (Edge)malloc(sizeof(struct ENode));
for (int i = ; i <=N; i++)
{
E->V2 = i;
int n;
scanf("%d", &n);
for (int j = ; j < n; j++)
{
scanf("%d", &(E->V1));
Insert(Gra, E);
}
}
if (Judget(Gra))
printf("");
else
printf("");
return ;
}
PTA数据结构与算法题目集(中文) 7-34的更多相关文章
- PTA数据结构与算法题目集(中文) 7-43字符串关键字的散列映射 (25 分)
PTA数据结构与算法题目集(中文) 7-43字符串关键字的散列映射 (25 分) 7-43 字符串关键字的散列映射 (25 分) 给定一系列由大写英文字母组成的字符串关键字和素数P,用移位法定义 ...
- PTA数据结构与算法题目集(中文) 7-42整型关键字的散列映射 (25 分)
PTA数据结构与算法题目集(中文) 7-42整型关键字的散列映射 (25 分) 7-42 整型关键字的散列映射 (25 分) 给定一系列整型关键字和素数P,用除留余数法定义的散列函数将关键字映射 ...
- PTA数据结构与算法题目集(中文) 7-41PAT排名汇总 (25 分)
PTA数据结构与算法题目集(中文) 7-41PAT排名汇总 (25 分) 7-41 PAT排名汇总 (25 分) 计算机程序设计能力考试(Programming Ability Test,简称P ...
- PTA数据结构与算法题目集(中文) 7-40奥运排行榜 (25 分)
PTA数据结构与算法题目集(中文) 7-40奥运排行榜 (25 分) 7-40 奥运排行榜 (25 分) 每年奥运会各大媒体都会公布一个排行榜,但是细心的读者发现,不同国家的排行榜略有不同.比如 ...
- PTA数据结构与算法题目集(中文) 7-39魔法优惠券 (25 分)
PTA数据结构与算法题目集(中文) 7-39魔法优惠券 (25 分) 7-39 魔法优惠券 (25 分) 在火星上有个魔法商店,提供魔法优惠券.每个优惠劵上印有一个整数面值K,表示若你在购买某商 ...
- PTA数据结构与算法题目集(中文) 7-38寻找大富翁 (25 分)
PTA数据结构与算法题目集(中文) 7-38寻找大富翁 (25 分) 7-38 寻找大富翁 (25 分) 胡润研究院的调查显示,截至2017年底,中国个人资产超过1亿元的高净值人群达15万人.假 ...
- PTA数据结构与算法题目集(中文) 7-37 模拟EXCEL排序 (25 分)
PTA数据结构与算法题目集(中文) 7-37 模拟EXCEL排序 (25 分) 7-37 模拟EXCEL排序 (25 分) Excel可以对一组纪录按任意指定列排序.现请编写程序实现类似功能. ...
- PTA数据结构与算法题目集(中文) 7-36 社交网络图中结点的“重要性”计算 (30 分)
PTA数据结构与算法题目集(中文) 7-36 社交网络图中结点的“重要性”计算 (30 分) 7-36 社交网络图中结点的“重要性”计算 (30 分) 在社交网络中,个人或单位(结点)之间通过某 ...
- PTA数据结构与算法题目集(中文) 7-35 城市间紧急救援 (25 分)
PTA数据结构与算法题目集(中文) 7-35 城市间紧急救援 (25 分) 作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图.在地图上显示有多个分散的城市和一些连接城市的快速道路.每个城市 ...
随机推荐
- 什么是data:image/png;base64,?一道关于Data URI Scheme的入门级CTF_Web题
一道关于Data URI Scheme的入门级CTF_Web题 0x00 题目描述 这是偶尔遇到的某网安交流群的入群题,题目没有任何的提示,直接给了一个txt文件. 0x01 解题过程 通过给的这个文 ...
- MySQL数据库常用命令行整理(表格)
Laplace Kang 2020-03-13T08:33:09Z 2020-03-14T17:35:53Z Sheet1 12480 9 600 600 6 9600 23040 0 0 600 0 ...
- 鸟哥的Linux私房菜基础学习篇(第三版)——阅读笔记(二)
第一章 Linux是什么 1.Linux是什么 一套操作系统 早期的Linux是针对386开发的 具有可移植性 2.Unix及Linux的发展史 1973年,Unix诞生,Ritchie等人以C语言写 ...
- SpringBoot内置的各种Starter是怎样构建的?--SpringBoot源码(六)
注:该源码分析对应SpringBoot版本为2.1.0.RELEASE 1 温故而知新 本篇接 外部配置属性值是如何被绑定到XxxProperties类属性上的?--SpringBoot源码(五) 温 ...
- css 超过标签定义的宽度后显示----
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Python——项目-小游戏2-动画绘制
实现游戏循环还有事件的监听 在上一讲中 你需要完成这样的这样的效果, 如果你还没有完成,请不要继续往下阅读!!切记切记切记.,重要的事情说三遍 我们来看一下什么是游戏循环 所谓的游戏循环很好的理解 就 ...
- Python基础 | 数据文件的读写
目录 txt txt的读入 txt的写出 csv xls\xlsx 在线网页数据 常用的工具 爬虫的步骤 pdf pdfrw PyPDF2 提取文档信息 word文档 其他统计软件生成文件 本文总结使 ...
- javaweb_HTML
第一章:网页的构成 1.1概念:b/s与c/s 1.1.1 现在的软件开发的整体架构主要分为B/S架构与C/S架构: b/s:浏览器/服务器 c/s:客户端/服务器 客户端:需要安装在系统里,才可使用 ...
- 手动实现AJAX
AJAX 每日更新前端基础,如果觉得不错,点个star吧
- 贪心-最大相容区间-Maximum Number of Events That Can Be Attended
2020-02-16 16:24:19 问题描述: 问题求解: 看起来就像是sort + 贪心,但是具体如何做呢? 实际上本题是最大相容区间的变种题,在最大相容区间里,我们按照结束时间对interva ...