本文示例数据下载,密码:vwy3

import pandas as pd

# 数据是之前在cnblog上抓取的部分文章信息
df = pd.read_csv('./data/SQL测试用数据_20200325.csv',encoding='utf-8') # 为了后续演示,抽样生成两个数据集 df1 = df.sample(n=500,random_state=123)
df2 = df.sample(n=600,random_state=234) # 保证有较多的交集
# 比例抽样是有顺序的,不加random_state,那么两个数据集是一样的

行的union

pandas 官方教程

pd.concat

pd.concat主要参数说明:

  • 要合并的dataframe,可以用[]进行包裹,e.g. [df1,df2,df3];
  • axis=0,axis是拼接的方向,0代表行,1代表列,不过很少用pd.concat来做列的join
  • join='outer'
  • ignore_index: bool = False,看是否需要重置index

如果要达到union all的效果,那么要拼接的多个dataframe,必须:

  • 列名名称及顺序都需要保持一致
  • 每列的数据类型要对应

如果列名不一致就会产生新的列

如果数据类型不一致,不一定报错,要看具体的兼容场景

df2.columns

输出:

Index(['href', 'title', 'create_time', 'read_cnt', 'blog_name', 'date', 'weekday', 'hour'], dtype='object')

# 这里故意修改下第2列的名称
df2.columns = ['href', 'title_2', 'create_time', 'read_cnt', 'blog_name', 'date','weekday', 'hour'] print(df1.shape,df2.shape) # inner方法将无法配对的列删除
# 拼接的方向,默认是就行(axis=0)
df_m = pd.concat([df1,df2],axis=0,join='inner') print(df_m.shape)

输出:

(500, 8) (600, 8)

(1100, 7)

# 查看去重后的数据集大小
df_m.drop_duplicates(subset='href').shape

输出:

(849, 7)

df.append

和pd.concat方法的区别:

  • append只能做行的union
  • append方法是outer join

相同点:

  • append可以支持多个dataframe的union
  • append大致等同于 pd.concat([df1,df2],axis=0,join='outer')
df1.append(df2).shape

输出:

(1100, 9)

df1.append([df2,df2]).shape

输出:

(1700, 9)

列的join

pd.concat

pd.concat也可以做join,不过关联的字段不是列的值,而是index

也因为是基于index的关联,所以pd.concat可以对超过2个以上的dataframe做join操作

# 按列拼接,设置axis=1
# inner join
print(df1.shape,df2.shape) df_m_c = pd.concat([df1,df2], axis=1, join='inner') print(df_m_c.shape)

输出:

(500, 8) (600, 8)

(251, 16)

这里是251行,可以取两个dataframe的index然后求交集看下

set1 = set(df1.index)
set2 = set(df2.index) set_join = set1.intersection(set2) print(len(set1), len(set2), len(set_join))

输出:

500 600 251

pd.merge

pd.merge主要参数说明:

  • left, join操作左侧的那一个dataframe
  • right, join操作左侧的那一个dataframe, merge方法只能对2个dataframe做join
  • how: join方式,默认是inner,str = 'inner'
  • on=None 关联的字段,如果两个dataframe关联字段一样时,设置on就行,不用管left_on,right_on
  • left_on=None 左表的关联字段
  • right_on=None 右表的关联字段,如果两个dataframe关联字段名称不一样的时候就设置左右字段
  • suffixes=('_x', '_y'), join后给左右表字段加的前缀,除关联字段外
print(df1.shape,df2.shape)

df_m = pd.merge(left=df1, right=df2\
,how='inner'\
,on=['href','blog_name']
) print(df_m.shape)

输出:

(500, 8) (600, 8)

(251, 14)

print(df1.shape,df2.shape)

df_m = pd.merge(left=df1, right=df2\
,how='inner'\
,left_on = 'href',right_on='href'
) print(df_m.shape)

输出:

(500, 8) (600, 8)

(251, 15)

# 对比下不同join模式的区别
print(df1.shape,df2.shape) # inner join
df_inner = pd.merge(left=df1, right=df2\
,how='inner'\
,on=['href','blog_name']
) # full outer join
df_full_outer = pd.merge(left=df1, right=df2\
,how='outer'\
,on=['href','blog_name']
) # left outer join
df_left_outer = pd.merge(left=df1, right=df2\
,how='left'\
,on=['href','blog_name']
) # right outer join
df_right_outer = pd.merge(left=df1, right=df2\
,how='right'\
,on=['href','blog_name']
)
print('inner join 左表∩右表:' + str(df_inner.shape))
print('full outer join 左表∪右表:' + str(df_full_outer.shape))
print('left outer join 左表包含右表:' + str(df_left_outer.shape))
print('right outer join 右表包含左表:' + str(df_right_outer.shape))

输出:

(500, 8) (600, 8)

inner join 左表∩右表:(251, 14)

full outer join 左表∪右表:(849, 14)

left outer join 左表包含右表:(500, 14)

right outer join 右表包含左表:(600, 14)

df.join

df.join主要参数说明:

  • other 右表
  • on 关联字段,这个和pd.concat做列join一样,是关联index的
  • how='left'
  • lsuffix='' 左表后缀
  • rsuffix='' 右表后缀
print(df1.shape,df2.shape)

df_m = df1.join(df2, how='inner',lsuffix='1',rsuffix='2')

df_m.shape

输出:

(500, 8) (600, 8)

(251, 16)

行列转置

pandas 官方教程

# 数据准备
import math
df['time_mark'] = df['hour'].apply(lambda x:math.ceil(int(x)/8)) df_stat_raw = df.pivot_table(values= ['read_cnt','href']\
,index=['weekday','time_mark']\
,aggfunc={'read_cnt':'sum','href':'count'}) df_stat = df_stat_raw.reset_index()
df_stat.head(3)

如上所示,df_stat是两个维度weekday,time_mark

以及两个计量指标 href, read_cnt

pivot

# pivot操作中,index和columns都是维度
res = df_stat.pivot(index='weekday',columns='time_mark',values='href').reset_index(drop=True)
res

stack & unstack

  • stack则是将层级最低(默认)的column转化为index
  • unstack默认是将排位最靠后的index转成column(column放到下面)





# pandas.pivot_table生成的结果如下
df_stat_raw
# unstack默认是将排位最靠后的index转成column(column放到下面)
df_stat_raw.unstack() # unstack也可以指定index,然后转成最底层的column
df_stat_raw.unstack('weekday') # 这个语句的效果是一样的,可以指定`index`的位置
# stat_raw.unstack(0)
# stack则是将层级醉倒的column转化为index
df_stat_raw.unstack().stack().head(5)
# 经过两次stack后就成为多维表了
# 每次stack都会像洋葱一样将column放到左侧的index来(放到index序列最后)
df_stat_raw.unstack().stack().stack().head(5)

输出:

weekday  time_mark
1 0 href 4
read_cnt 2386
1 href 32
read_cnt 31888
2 href 94
dtype: int64
pd.DataFrame(df_stat_raw.unstack().stack().stack()).reset_index().head(5)

melt

melt方法中id_vals是指保留哪些作为维度(index),剩下的都看做是数值(value)

除此之外,会另外生成一个维度叫variable,列转行后记录被转的的变量名称

print(df_stat.head(5))

df_stat.melt(id_vars=['weekday']).head(5)
df_stat.melt(id_vars=['weekday','time_mark']).head(5)

Python基础 | pandas中dataframe的整合与形变(merge & reshape)的更多相关文章

  1. Python之Pandas中Series、DataFrame

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  2. Python之Pandas中Series、DataFrame实践

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  3. Spark与Pandas中DataFrame对比

      Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制paral ...

  4. Spark与Pandas中DataFrame对比(详细)

      Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制paral ...

  5. Pandas中DataFrame修改列名

    Pandas中DataFrame修改列名:使用 rename df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01- ...

  6. pandas中DataFrame的ix,loc,iloc索引方式的异同

    pandas中DataFrame的ix,loc,iloc索引方式的异同 1.loc: 按照标签索引,范围包括start和end 2.iloc: 在位置上进行索引,不包括end 3.ix: 先在inde ...

  7. python – 基于pandas中的列中的值从DataFrame中选择行

    如何从基于pandas中某些列的值的DataFrame中选择行?在SQL中我将使用: select * from table where colume_name = some_value. 我试图看看 ...

  8. python数据分析pandas中的DataFrame数据清洗

    pandas中的DataFrame中的空数据处理方法: 方法一:直接删除 1.查看行或列是否有空格(以下的df为DataFrame类型,axis=0,代表列,axis=1代表行,以下的返回值都是行或列 ...

  9. Python基础 — Pandas

    Pandas -- 简介 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.        Pandas ...

随机推荐

  1. 常用阻塞队列 BlockingQueue 有哪些?

    为什么要使用阻塞队列 之前,介绍了一下 ThreadPoolExecutor 的各参数的含义(并发编程之线程池ThreadPoolExecutor),其中有一个 BlockingQueue,它是一个阻 ...

  2. Nginx之反向代理配置(一)

    前文我们聊了下Nginx作为web服务器配置https.日志模块的常用配置.rewrite模块重写用户请求的url,回顾请参考https://www.cnblogs.com/qiuhom-1874/p ...

  3. No CPU/ABI system image available for this target

    在创建AVD设备的时候无法正常创建虚拟设备,CPU选项不能选择. 下面报错:No CPU/ABI system image available for this target 是因为SDK里面缺少了s ...

  4. 【Python3】HTML基础

    [web前端]HTML基础 一.BS模式 BS(Browser-Server)模式:顾名思义为浏览器-服务器的意思,对比的话类似我们PC上面浏览器使用的产品即为BS模式产品,例如google doc. ...

  5. python读入写入中文名图片

    import os import cv2 import numpy as np # 读入中文命名图片 def cv_imread(in_path): cv_img = cv2.imdecode(np. ...

  6. java编写非对称加密,解密,公钥加密,私钥解密,RSA,rsa

    非对称加密已经被评为加密标准,主要包含(公钥加密私钥解密,或者私钥加密公钥解密)本文主要讲解的是如何用java生成 公钥和私钥并且 进行字符串加密 和字符串解密    //如需要代码copy如下 im ...

  7. 面试官系统精讲Java源码及大厂真题系列之Java线程安全的解决办法

    1. 背景 1.1 static修饰类变量.方法.方法块.  public + static = 该变量任何类都可以直接访问,而且无需初始化类,直接使用 类名.static 变量 1.2 多个线程同时 ...

  8. django 从零开始 9 自定义密码验证加密

    先上想法,想对数据库账号的密码进行一个加密,但是django文档中的加密方法set_password貌似是只针对他们默认的user模型 或者继承 AbstractBaseUser的模型有效 from ...

  9. ClassLoader&双亲委派&类初始化过程

    1.class sycle 类加载的生命周期:加载(Loading)–>验证(Verification)–>准备(Preparation)–>解析(Resolution)–>初 ...

  10. 在云服务搭建jupyter环境

    一.环境配置 centeos7 python3 二.安装jupyter notebook 1.安装jupyter 安装Jupyter Notebook 通过pip安装Jupyter Notebook ...