PyTorch 系列教程之空间变换器网络
在本教程中,您将学习如何使用称为空间变换器网络的视觉注意机制来扩充您的网络。你可以在DeepMind paper 阅读更多有关空间变换器网络的内容。
空间变换器网络是对任何空间变换的差异化关注的概括。空间变换器网络(简称STN)允许神经网络学习如何在输入图像上执行空间变换,以增强模型的几何不变性。例如,它可以裁剪感兴趣的区域,缩放并校正图像的方向。而这可能是一种有用的机制,因为CNN对于旋转和缩放以及更一般的仿射变换并不是不变的。
关于STN的最棒的事情之一是能够简单地将其插入任何现有的CNN,而且只需很少的修改。
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
plt.ion() # 交互模式
1.加载数据
在这篇文章中,我们尝试了经典的 MNIST 数据集。使用标准卷积网络增强空间变换器网络。
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 训练数据集
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='.', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=64, shuffle=True, num_workers=4)
# 测试数据集
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='.', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=64, shuffle=True, num_workers=4)
输出结果
Downloading http://yann.lecun.com/exdb/mnist/train-http://pytorch.panchuang.net/FourSection/images-idx3-ubyte.gz to ./MNIST/raw/train-http://pytorch.panchuang.net/FourSection/images-idx3-ubyte.gz
Extracting ./MNIST/raw/train-http://pytorch.panchuang.net/FourSection/images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./MNIST/raw/train-labels-idx1-ubyte.gz
Extracting ./MNIST/raw/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-http://pytorch.panchuang.net/FourSection/images-idx3-ubyte.gz to ./MNIST/raw/t10k-http://pytorch.panchuang.net/FourSection/images-idx3-ubyte.gz
Extracting ./MNIST/raw/t10k-http://pytorch.panchuang.net/FourSection/images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./MNIST/raw/t10k-labels-idx1-ubyte.gz
Extracting ./MNIST/raw/t10k-labels-idx1-ubyte.gz
Processing...
Done!
2.什么是空间变换器网络?
空间变换器网络归结为三个主要组成部分:
本地网络(Localisation Network)是常规CNN,其对变换参数进行回归。不会从该数据集中明确地学习转换,而是网络自动学习增强全局准确性的空间变换。
网格生成器( Grid Genator)在输入图像中生成与输出图像中的每个像素相对应的坐标网格。
采样器(Sampler)使用变换的参数并将其应用于输入图像。
注意:我们使用最新版本的Pytorch,它应该包含affine_grid和grid_sample模块。
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
# 空间变换器定位 - 网络
self.localization = nn.Sequential(
nn.Conv2d(1, 8, kernel_size=7),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
nn.Conv2d(8, 10, kernel_size=5),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True)
)
# 3 * 2 affine矩阵的回归量
self.fc_loc = nn.Sequential(
nn.Linear(10 * 3 * 3, 32),
nn.ReLU(True),
nn.Linear(32, 3 * 2)
)
# 使用身份转换初始化权重/偏差
self.fc_loc[2].weight.data.zero_()
self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
# 空间变换器网络转发功能
def stn(self, x):
xs = self.localization(x)
xs = xs.view(-1, 10 * 3 * 3)
theta = self.fc_loc(xs)
theta = theta.view(-1, 2, 3)
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x
def forward(self, x):
# transform the input
x = self.stn(x)
# 执行一般的前进传递
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = Net().to(device)
3.训练模型
训练模型现在我们使用 SGD(随机梯度下降)算法来训练模型。网络正在以有监督的方式学习分类任务。同时,该模型以端到端的方式自动学习STN。
optimizer = optim.SGD(model.parameters(), lr=0.01)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 500 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
#
# 一种简单的测试程序,用于测量STN在MNIST上的性能。.
#
def test():
with torch.no_grad():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# 累加批量损失
test_loss += F.nll_loss(output, target, size_average=False).item()
# 获取最大对数概率的索引
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
.format(test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
4.可视化 STN 结果
现在,我们将检查我们学习的视觉注意机制的结果。
我们定义了一个小辅助函数,以便在训练时可视化变换。
def convert_http://pytorch.panchuang.net/FourSection/image_np(inp):
"""Convert a Tensor to numpy http://pytorch.panchuang.net/FourSection/image."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
return inp
# 我们想要在训练之后可视化空间变换器层的输出
# 我们使用STN可视化一批输入图像和相应的变换批次。
def visualize_stn():
with torch.no_grad():
# Get a batch of training data
data = next(iter(test_loader))[0].to(device)
input_tensor = data.cpu()
transformed_input_tensor = model.stn(data).cpu()
in_grid = convert_http://pytorch.panchuang.net/FourSection/image_np(
torchvision.utils.make_grid(input_tensor))
out_grid = convert_http://pytorch.panchuang.net/FourSection/image_np(
torchvision.utils.make_grid(transformed_input_tensor))
# Plot the results side-by-side
f, axarr = plt.subplots(1, 2)
axarr[0].imshow(in_grid)
axarr[0].set_title('Dataset http://pytorch.panchuang.net/FourSection/images')
axarr[1].imshow(out_grid)
axarr[1].set_title('Transformed http://pytorch.panchuang.net/FourSection/images')
for epoch in range(1, 20 + 1):
train(epoch)
test()
# 在某些输入批处理上可视化STN转换
visualize_stn()
plt.ioff()
plt.show()
输出结果
Train Epoch: 1 [0/60000 (0%)] Loss: 2.336866
Train Epoch: 1 [32000/60000 (53%)] Loss: 0.841600
Test set: Average loss: 0.2624, Accuracy: 9212/10000 (92%)
Train Epoch: 2 [0/60000 (0%)] Loss: 0.527656
Train Epoch: 2 [32000/60000 (53%)] Loss: 0.428908
Test set: Average loss: 0.1176, Accuracy: 9632/10000 (96%)
Train Epoch: 3 [0/60000 (0%)] Loss: 0.305364
Train Epoch: 3 [32000/60000 (53%)] Loss: 0.263615
Test set: Average loss: 0.1099, Accuracy: 9677/10000 (97%)
Train Epoch: 4 [0/60000 (0%)] Loss: 0.169776
Train Epoch: 4 [32000/60000 (53%)] Loss: 0.408683
Test set: Average loss: 0.0861, Accuracy: 9734/10000 (97%)
Train Epoch: 5 [0/60000 (0%)] Loss: 0.286635
Train Epoch: 5 [32000/60000 (53%)] Loss: 0.122162
Test set: Average loss: 0.0817, Accuracy: 9743/10000 (97%)
Train Epoch: 6 [0/60000 (0%)] Loss: 0.331074
Train Epoch: 6 [32000/60000 (53%)] Loss: 0.126413
Test set: Average loss: 0.0589, Accuracy: 9822/10000 (98%)
Train Epoch: 7 [0/60000 (0%)] Loss: 0.109780
Train Epoch: 7 [32000/60000 (53%)] Loss: 0.172199
Test set: Average loss: 0.0629, Accuracy: 9814/10000 (98%)
Train Epoch: 8 [0/60000 (0%)] Loss: 0.078934
Train Epoch: 8 [32000/60000 (53%)] Loss: 0.156452
Test set: Average loss: 0.0563, Accuracy: 9839/10000 (98%)
Train Epoch: 9 [0/60000 (0%)] Loss: 0.063500
Train Epoch: 9 [32000/60000 (53%)] Loss: 0.186023
Test set: Average loss: 0.0713, Accuracy: 9799/10000 (98%)
Train Epoch: 10 [0/60000 (0%)] Loss: 0.199808
Train Epoch: 10 [32000/60000 (53%)] Loss: 0.083502
Test set: Average loss: 0.0528, Accuracy: 9850/10000 (98%)
Train Epoch: 11 [0/60000 (0%)] Loss: 0.092909
Train Epoch: 11 [32000/60000 (53%)] Loss: 0.204410
Test set: Average loss: 0.0471, Accuracy: 9857/10000 (99%)
Train Epoch: 12 [0/60000 (0%)] Loss: 0.078322
Train Epoch: 12 [32000/60000 (53%)] Loss: 0.041391
Test set: Average loss: 0.0634, Accuracy: 9796/10000 (98%)
Train Epoch: 13 [0/60000 (0%)] Loss: 0.061228
Train Epoch: 13 [32000/60000 (53%)] Loss: 0.137952
Test set: Average loss: 0.0654, Accuracy: 9802/10000 (98%)
Train Epoch: 14 [0/60000 (0%)] Loss: 0.068635
Train Epoch: 14 [32000/60000 (53%)] Loss: 0.084583
Test set: Average loss: 0.0515, Accuracy: 9853/10000 (99%)
Train Epoch: 15 [0/60000 (0%)] Loss: 0.263158
Train Epoch: 15 [32000/60000 (53%)] Loss: 0.127036
Test set: Average loss: 0.0493, Accuracy: 9851/10000 (99%)
Train Epoch: 16 [0/60000 (0%)] Loss: 0.083642
Train Epoch: 16 [32000/60000 (53%)] Loss: 0.028274
Test set: Average loss: 0.0461, Accuracy: 9867/10000 (99%)
Train Epoch: 17 [0/60000 (0%)] Loss: 0.076734
Train Epoch: 17 [32000/60000 (53%)] Loss: 0.034796
Test set: Average loss: 0.0409, Accuracy: 9864/10000 (99%)
Train Epoch: 18 [0/60000 (0%)] Loss: 0.122501
Train Epoch: 18 [32000/60000 (53%)] Loss: 0.152187
Test set: Average loss: 0.0474, Accuracy: 9860/10000 (99%)
Train Epoch: 19 [0/60000 (0%)] Loss: 0.050512
Train Epoch: 19 [32000/60000 (53%)] Loss: 0.270055
Test set: Average loss: 0.0416, Accuracy: 9878/10000 (99%)
Train Epoch: 20 [0/60000 (0%)] Loss: 0.073357
Train Epoch: 20 [32000/60000 (53%)] Loss: 0.017542
Test set: Average loss: 0.0713, Accuracy: 9816/10000 (98%)
脚本的总运行时间:1分48.736秒
PyTorch 官方60分钟教程的配套视频教程已经上线B站,欢迎观看,关注:
https://www.bilibili.com/video/av66421076
欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:
http://pytorch.panchuang.net/
PyTorch 系列教程之空间变换器网络的更多相关文章
- Pytorch系列教程
介绍 不久前Pytorch发布了1.0版本,官网的doc页也更新了.这里说下官网的教程很实用,边学pytorch搭网络边学NLP-图像等领域的先进技术. 官网的教程都是英文的,本人就用这个系列博客做个 ...
- Pytorch系列教程-使用Seq2Seq网络和注意力机制进行机器翻译
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutor ...
- Pytorch系列教程-使用字符级RNN生成姓名
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutor ...
- Pytorch系列教程-使用字符级RNN对姓名进行分类
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/char_rnn_classification_t ...
- pytorch空间变换网络
pytorch空间变换网络 本文将学习如何使用称为空间变换器网络的视觉注意机制来扩充网络.可以在DeepMind paper 阅读更多有关空间变换器网络的内容. 空间变换器网络是对任何空间变换的差异化 ...
- 数据挖掘入门系列教程(十一)之keras入门使用以及构建DNN网络识别MNIST
简介 在上一篇博客:数据挖掘入门系列教程(十点五)之DNN介绍及公式推导中,详细的介绍了DNN,并对其进行了公式推导.本来这篇博客是准备直接介绍CNN的,但是想了一下,觉得还是使用keras构建一个D ...
- 数据挖掘入门系列教程(十二)之使用keras构建CNN网络识别CIFAR10
简介 在上一篇博客:数据挖掘入门系列教程(十一点五)之CNN网络介绍中,介绍了CNN的工作原理和工作流程,在这一篇博客,将具体的使用代码来说明如何使用keras构建一个CNN网络来对CIFAR-10数 ...
- 从零搭建Pytorch模型教程(三)搭建Transformer网络
前言 本文介绍了Transformer的基本流程,分块的两种实现方式,Position Emebdding的几种实现方式,Encoder的实现方式,最后分类的两种方式,以及最重要的数据格式的介绍. ...
- Angular2入门系列教程7-HTTP(一)-使用Angular2自带的http进行网络请求
上一篇:Angular2入门系列教程6-路由(二)-使用多层级路由并在在路由中传递复杂参数 感觉这篇不是很好写,因为涉及到网络请求,如果采用真实的网络请求,这个例子大家拿到手估计还要自己写一个web ...
随机推荐
- github浏览器无法访问,并且idea无法push项目
github浏览器无法访问,并且idea无法push项目 原因:前一晚还能正常访问github,今天就无法提交项目了.前一步的操作为删库,然后改库.估计是因为dns出现了问题,具体问题不知道. 网上一 ...
- js案例之使用正则表达式进行验证数据正确性
#js案例之使用正则表达式进行验证数据正确性 代码上传至 "GitHub" 样例: <tr> <td>密码:</td> <td> & ...
- JavaScript(5)--- 面向对象 + 原型
面向对象 + 原型 面向对象这个概念并不陌生,如 C++.Java 都是面向对象语言.面向对象而言都会现有一个类的概念 ,先有类再有对象.类是实例的类型模板. 比如人类 是一个类 张三 李四 就是一个 ...
- [Python之路] object类中的特殊方法
一.object类的源码 python版本:3.8 class object: """ The most base type """ # d ...
- mysql in与exists区别
1.exists是对外表做loop循环,每次loop循环再对内表(子查询)进行查询,那么因为对内表的查询使用的索引(内表效率高,故可用大表),而外表有多大都需要遍历,不可避免(尽量用小表),故内表大的 ...
- vue-cli “从入门到放弃”
主要作用:目录结构.本地调试.代码部署.热加载.单元测试 在如今前端技术飞速发展的时代,angular.js.vue.js 和 react.js 作为前端框架已经呈现出了三国鼎立的局面.作为国人若你不 ...
- 【Amaple教程】6. 路由配置
在 第1节<启动路由> 章节中为了能让单页应用顺利跑起来,我们提前介绍了简单的路由配置方法.我们已了解路由配置的目的是指定不同的url下对应的 模块节点(也叫做模块容器)内应该显示哪个模块 ...
- [LeetCode] 面试题 10.01.合并排序的数组
题目: 这道题有多种实现的思路,这里使用双指针结合数组有序的特点进行解决 思路: m代表A初始时有效元素的个数,n代表B中元素的个数,那么n+m才是A的总长度 从A的最后一个位置开始,设为cur,分别 ...
- 使用 Redis 如何实现查询附近的人?「视频版」——面试突击 003 期
面试问题 Redis 如何实现查询附近的人? 涉及知识点 Redis 中如何操作位置信息? GEO 底层是如何实现的? 如何在程序实现查询附近的人? 在实际使用中需要注意哪些问题? 视频答案 视频地址 ...
- 浅谈JS之setTimeout与setInterval
概念 setTimeout与clearTimeout,以及setInterval与clearInterval均属于Window对象方法. 方法 描述 setTimeout 在指定的毫秒数后调用函数或计 ...