Pytorch自定义创建BP神经网络
class BPNet(nn.Module):
def __init__(self, in_dim, n_hidden_1, n_hidden_2,\
n_hidden_3, n_hidden_4, n_hidden_5, out_dim):
super(BPNet, self).__init__()
self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1))
self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2))
self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, n_hidden_3), nn.BatchNorm1d(n_hidden_3), nn.ReLU(True))
self.layer4 = nn.Sequential(nn.Linear(n_hidden_3, n_hidden_4), nn.BatchNorm1d(n_hidden_4), nn.ReLU(True), nn.Dropout(0.1))
self.layer5 = nn.Sequential(nn.Linear(n_hidden_4, n_hidden_5), nn.BatchNorm1d(n_hidden_5))
self.layer6 = nn.Sequential(nn.Linear(n_hidden_5, out_dim)) def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
x = self.layer6(x)
return x
net = BPNet(in_dim=5, n_hidden_1=20, n_hidden_2=250, n_hidden_3=500, n_hidden_4=250, n_hidden_5=50, out_dim=2) # 实例化网络 简洁写法
cfg = {
'': [20, 200, 500, 200, 50], } class BPNet(nn.Module):
def __init__(self, name):
super(BPNet, self).__init__()
self.features = self._make_layers(cfg[name])
self.classifier = nn.Sequential(
nn.Linear(cfg[name][-1], 2)
) def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out def _make_layers(self, cfg):
layers = []
in_dim = 5
for x in cfg:
layers += [nn.Linear(in_dim, x),
nn.BatchNorm1d(x),
nn.ReLU(inplace=True)]
in_dim = x
return nn.Sequential(*layers)
net = BPNet('1')
Pytorch自定义创建BP神经网络的更多相关文章
- BP神经网络分类应用
DNA序列分类 作为研究DNA序列结构的尝试,提出以下对序列集合进行分类的问题:有20个已知类别的人工制造序列,其中序列标号1-10为A类,11-20为B类.请从中提取特征,构造分类方法,并用这些已 ...
- 使用HOG特征+BP神经网络进行车标识别
先挖个坑,快期末考试了,有空填上w 好了,今晚刚好有点闲,就把坑填上吧. //-------------------------------开篇---------------------------- ...
- 机器学习(一):梯度下降、神经网络、BP神经网络
这几天围绕论文A Neural Probability Language Model 看了一些周边资料,如神经网络.梯度下降算法,然后顺便又延伸温习了一下线性代数.概率论以及求导.总的来说,学到不少知 ...
- bp神经网络及matlab实现
本文主要内容包含: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 . 第0节.引例 本文以Fisher的Iris数据集 ...
- 数模学习笔记(五)——BP神经网络
1.BP神经网络是一种前馈型网络(各神经元接受前一层的输入,并输出给下一层,没有反馈),分为input层,hide层,output层 2.BP神经网络的步骤: 1)创建一个神经网络:newff a.训 ...
- BP神经网络(原理及MATLAB实现)
人工神经网络概述: 人工神经元模型: 神经网络的分类: 按照连接方式,可以分为:前向神经网络 vs. 反馈(递归)神经网络: 按照学习方式,可以分为:有导师学习神经网络 vs. 无导师学习神经网络: ...
- Matlab的BP神经网络工具箱及其在函数逼近中的应用
1.神经网络工具箱概述 Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器.线性网络.BP网络.径向基函数网络.竞争型神经网络.自组织网络和学习向量量化网络.反馈 ...
- BP神经网络与Python实现
人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善. 联想大家熟悉的回归问题, 神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数, 并使用该函数进行预测, 网 ...
- BP神经网络学习
人工神经元模型 S型函数(Sigmoid) 双极S型函数 神经网络可以分为哪些? 按照连接方式,可以分为:前向神经网络 vs. 反馈(递归)神经网络 按照学习方式,可以分为:有导师学习神经网络 ...
随机推荐
- 重定向 CORS 跨域请求
TL;DR 非简单请求不可重定向,包括第一个preflight请求和第二个真正的请求都不行. 简单请求可以重定向任意多次,但如需兼容多数浏览器,只可进行一次重定向. 中间服务器应当同样配置相关 COR ...
- Chrome80调整SameSite策略对IdentityServer4的影响以及处理方案(翻译)
首先,好消息是Goole将于2020年2月份发布Chrome 80版本.本次发布将推进Google的"渐进改良Cookie"策略,打造一个更为安全和保障用户隐私的网络环境. 坏消息 ...
- test命令的使用以及判断语法
test命令 Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值.字符和文件三个方面的测试. 语法:test EXPRESSION 或者 [ EXPRESSION ] 字符串判断( ...
- MySQL5.6 选项和变量整理
MySQL5.6 选项和变量整理 --allow-suspicious-udfs 这个选项控制是否用户定义函数只有一个xxx符号用于主函数加载.默认,该选项是关闭并且只具有至少一个辅助符号的UDFs ...
- 深度学习论文TOP10,2019一季度研究进展大盘点
9012年已经悄悄过去了1/3. 过去的100多天里,在深度学习领域,每天都有大量的新论文产生.所以深度学习研究在2019年开了怎样一个头呢? Open Data Science对第一季度的深度学习研 ...
- 带权并查集 HDU - 3047
题意: 一圈座位有n个,给出m组序号之间的关系,比如,1 2 150 代表2号坐在1号位置序号+150,看m组数据有多少组冲突的. 思路: 带权并查集模板. #include<stdio.h&g ...
- CISP-PTE学习记录-大纲(1)
大纲内容记录 Linux操作系统安全 Windows操作系统安全 数据库安全 Web安全基础 HHTP协议 注入漏洞 XSS漏洞 请求伪造 文件处理漏洞 访问控制漏洞 会话管理漏洞 实战练习 中间件 ...
- NatApp 外网映射工具
外网映射工具 在做微信开发或者是对接第三方支付接口时,回调接口可能需要外网访问,这时候开发者在本地测试的时候,需要用到外网测试工具.常用的外网测试工具有natapp.ngrok NatApp简介服务器 ...
- mongodb的更新语句
MongoDB 使用 update() 和 save() 方法来更新集合中的文档: update()方法: update() 方法用于更新已存在的文档.语法格式如下: db.collection.up ...
- sql mysql数据库导库 panda pymysql
mysql数据库 导入数据 1. panda 效率超高 对内存要求高 网络稳定性 # 读取文件 ratings_names = ['user_id', 'movie_id', 'ratings', ' ...