class BPNet(nn.Module):
def __init__(self, in_dim, n_hidden_1, n_hidden_2,\
n_hidden_3, n_hidden_4, n_hidden_5, out_dim):
super(BPNet, self).__init__()
self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1))
self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2))
self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, n_hidden_3), nn.BatchNorm1d(n_hidden_3), nn.ReLU(True))
self.layer4 = nn.Sequential(nn.Linear(n_hidden_3, n_hidden_4), nn.BatchNorm1d(n_hidden_4), nn.ReLU(True), nn.Dropout(0.1))
self.layer5 = nn.Sequential(nn.Linear(n_hidden_4, n_hidden_5), nn.BatchNorm1d(n_hidden_5))
self.layer6 = nn.Sequential(nn.Linear(n_hidden_5, out_dim)) def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
x = self.layer6(x)
return x
net = BPNet(in_dim=5, n_hidden_1=20, n_hidden_2=250, n_hidden_3=500, n_hidden_4=250, n_hidden_5=50, out_dim=2)  # 实例化网络

简洁写法
cfg = {
'': [20, 200, 500, 200, 50], } class BPNet(nn.Module):
def __init__(self, name):
super(BPNet, self).__init__()
self.features = self._make_layers(cfg[name])
self.classifier = nn.Sequential(
nn.Linear(cfg[name][-1], 2)
) def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out def _make_layers(self, cfg):
layers = []
in_dim = 5
for x in cfg:
layers += [nn.Linear(in_dim, x),
nn.BatchNorm1d(x),
nn.ReLU(inplace=True)]
in_dim = x
return nn.Sequential(*layers)
net = BPNet('1')

Pytorch自定义创建BP神经网络的更多相关文章

  1. BP神经网络分类应用

    DNA序列分类  作为研究DNA序列结构的尝试,提出以下对序列集合进行分类的问题:有20个已知类别的人工制造序列,其中序列标号1-10为A类,11-20为B类.请从中提取特征,构造分类方法,并用这些已 ...

  2. 使用HOG特征+BP神经网络进行车标识别

    先挖个坑,快期末考试了,有空填上w 好了,今晚刚好有点闲,就把坑填上吧. //-------------------------------开篇---------------------------- ...

  3. 机器学习(一):梯度下降、神经网络、BP神经网络

    这几天围绕论文A Neural Probability Language Model 看了一些周边资料,如神经网络.梯度下降算法,然后顺便又延伸温习了一下线性代数.概率论以及求导.总的来说,学到不少知 ...

  4. bp神经网络及matlab实现

    本文主要内容包含: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 . 第0节.引例  本文以Fisher的Iris数据集 ...

  5. 数模学习笔记(五)——BP神经网络

    1.BP神经网络是一种前馈型网络(各神经元接受前一层的输入,并输出给下一层,没有反馈),分为input层,hide层,output层 2.BP神经网络的步骤: 1)创建一个神经网络:newff a.训 ...

  6. BP神经网络(原理及MATLAB实现)

    人工神经网络概述: 人工神经元模型: 神经网络的分类: 按照连接方式,可以分为:前向神经网络 vs. 反馈(递归)神经网络: 按照学习方式,可以分为:有导师学习神经网络 vs. 无导师学习神经网络: ...

  7. Matlab的BP神经网络工具箱及其在函数逼近中的应用

    1.神经网络工具箱概述 Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器.线性网络.BP网络.径向基函数网络.竞争型神经网络.自组织网络和学习向量量化网络.反馈 ...

  8. BP神经网络与Python实现

    人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善. 联想大家熟悉的回归问题, 神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数, 并使用该函数进行预测, 网 ...

  9. BP神经网络学习

    人工神经元模型     S型函数(Sigmoid) 双极S型函数 神经网络可以分为哪些? 按照连接方式,可以分为:前向神经网络 vs. 反馈(递归)神经网络 按照学习方式,可以分为:有导师学习神经网络 ...

随机推荐

  1. python通过scapy编写arp扫描器

    多网卡的情况下发送二层包需要配置网卡 三层包不需要配置接口发包方法: sr() 发送三层数据包,等待接收一个或者多个数据包的响应 sr1() 发送三层数据包,只会接收一个数据包的响应 srp() 发送 ...

  2. jQuery常用事件,each循环,引用当前时间

    jQuery常用事件,each循环,引用当前时间 1.常用事件 click(function(){...}) #点击时触发hover(function(){...}) #鼠标移到时就触发blur(fu ...

  3. win7系统下的Nodejs开发环境配置

    此处不推荐使用msi安装包直接安装nodejs,我们应该知道它里面做了哪些事情,这样以后出问题的时候,可以更快速地定位问题点.另一方面,直接安装的情况,以后更新了版本的话会很麻烦,因为如果我们想体验新 ...

  4. CF33C Wonderful Randomized Sum 题解

    原题链接 简要题意: 你可以无限次的把该数组的一个前缀和后缀 \(\times -1\),问最终的最大序列和. 这题盲目WA了数次才知道本质 这题89个数据吊打std CF真好啊,发现一个错后面就不测 ...

  5. mybatis类型转换器 - 自定义全局转换enum

    在数据模型.接口参数等场景部分属性参数为一些常量值,比如性别:男.女.若是定义成int或String类型,于是类型本身的范围太宽,要求使用者需要了解底层的业务方可知如何传值,那整体来看增加沟通成本,对 ...

  6. Hive数据倾斜的原因及主要解决方法

    数据倾斜产生的原因 数据倾斜的原因很大部分是join倾斜和聚合倾斜两大类 Hive倾斜之group by聚合倾斜 原因: 分组的维度过少,每个维度的值过多,导致处理某值的reduce耗时很久: 对一些 ...

  7. TensorFlow 训练好模型参数的保存和恢复代码

    TensorFlow 训练好模型参数的保存和恢复代码,之前就在想模型不应该每次要个结果都要重新训练一遍吧,应该训练一次就可以一直使用吧. TensorFlow 提供了 Saver 类,可以进行保存和恢 ...

  8. C++最简打开网页的方法

    system("explorer https://pay.747fz.com");

  9. mybatis入门四 解决字段名与实体类属性名不相同的冲突

    一.创建测试需要使用的表和数据 CREATE TABLE orders( order_id INT PRIMARY KEY AUTO_INCREMENT, order_no VARCHAR(20), ...

  10. JSP学习笔记(三)

    jsp与javabean 编写javabean 创建与使用bean 获取和修改bean的属性 javabean是一种java类,是通过封装属性和方法成为具有某种功能或处理某个业务的对象,简称bean, ...