[GX/GZOI2019]特技飞行(扫描线+置换)
感觉是6题中最难的一题,其实这题是一个二合一:
第一问:给定平面上若干点和k个关键点,关键点覆盖一个45°倾斜的正方形范围r,求有多少点被至少一个关键点覆盖。这个可以曼哈顿转切比雪夫距离,然后再扫描线求解,复杂度O(nlogn)
第二问:求最少和最多有多少次擦肩而过。显然每个交点都可以做对向交换,这是最少擦肩而过的次数。最多的次数,假设全部擦肩而过得到排列p,对向交换实际上是交换两元素位置,用最小交换次数还原排列即可。
#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int>pii;
const int N=5e5+;
int n,m,a,b,c,x0,x1,ans1,ans2,tot,cnt,ans,C[N<<],y[N][],f[N],vis[N];
double d[N<<];
set<pii>S;
struct node{double x,y;int v,p;}p[N<<];
bool operator<(node a,node b){return a.x<b.x;}
node calc(int i,int j)
{
int y1=y[j][]-y[i][],y2=y[i][]-y[j][];
double k=1.0*y1/(y1+y2),xl=1.0*x0+k*(x1-x0),yl=1.0*y[i][]+k*(y[i][]-y[i][]);
d[++cnt]=xl-yl;
return(node){xl+yl,xl-yl,,};
}
bool cmp(node a,node b){return fabs(a.x-b.x)<1e-?a.y<b.y:a.x<b.x;}
void add(int x,int v){while(x<=cnt)C[x]+=v,x+=x&-x;}
int query(int x){int ret=;while(x)ret+=C[x],x-=x&-x;return ret;}
bool cmp1(int a,int b){return y[a][]<y[b][];}
int main()
{
scanf("%d%d%d%d%d%d",&n,&a,&b,&c,&x0,&x1);
for(int i=;i<=n;i++)scanf("%d",&y[i][]);
for(int i=;i<=n;i++)scanf("%d",&y[i][]);
for(int i=;i<=n;i++)
{
pii u=make_pair(y[i][],i);
set<pii>::iterator it=S.lower_bound(u);
while(it!=S.end())p[++tot]=calc(it->second,i),it++;
S.insert(u);
}
int sum=tot;scanf("%d",&m);
for(int i=,x,y,z;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
d[++cnt]=x-y+z,d[++cnt]=x-y-z;
p[++tot]=(node){x+y+z,x-y+z,,};
p[++tot]=(node){x+y+z,x-y-z,-,};
p[++tot]=(node){x+y-z,x-y+z,-,};
p[++tot]=(node){x+y-z,x-y-z,,};
}
sort(p+,p+tot+);
sort(d+,d+cnt+);
cnt=unique(d+,d+cnt+)-d-;
for(int i=;i<=tot;i++)p[i].p=upper_bound(d+,d+cnt+,p[i].y-1e-)-d;
sort(p+,p+tot+,cmp);
for(int i=;i<=tot;i++)if(p[i].v)add(p[i].p,p[i].v);else ans+=query(p[i].p)>;
ans1=ans*c+sum*a;
for(int i=;i<=n;i++)f[i]=i;
sort(f+,f+n+,cmp1);
int num=n;
for(int i=;i<=n;i++)
if(!vis[i])
{
num--;
for(int j=i;!vis[j];j=f[j])vis[j]=;
}
ans2=ans1+(b-a)*(sum-num);
if(ans1>ans2)swap(ans1,ans2);
printf("%d %d",ans1,ans2);
}
[GX/GZOI2019]特技飞行(扫描线+置换)的更多相关文章
- P5302 [GXOI/GZOI2019]特技飞行
题目地址:P5302 [GXOI/GZOI2019]特技飞行 这里是官方题解(by lydrainbowcat) 题意 给 \(10^5\) 条直线,给 \(x = st\) 和 \(x = ed\) ...
- 题解-GXOI/GZOI2019 特技飞行
Problem loj3085 bzoj不放题面差评 题意概要:给出两条竖直直线,再给出 \(n\) 架飞机的初始航线:一条接通这两条直线的线段,保证航线交点不在两条直线上.现要求安排所有飞机在航线相 ...
- [GXOI/GZOI2019]特技飞行
题目链接 [https://www.luogu.org/problem/P5302] 思路:这道题可以说是两道题的合并.注意到\(c\)的分数与 \(a\)和\(b\)的分数 无关,也就是说可以分成两 ...
- luogu P5302 [GXOI/GZOI2019]特技飞行
传送门 强行二合一可还行 首先\(c\)的贡献是不会变的,先考虑求出多少交点被矩形覆盖,交点的话可以按左端点纵坐标从下到上顺序枚举一条线段,然后维护右端点纵坐标的set,把之前处理过线段的右端点放进s ...
- Loj #3085. 「GXOI / GZOI2019」特技飞行
Loj #3085. 「GXOI / GZOI2019」特技飞行 题目描述 公元 \(9012\) 年,Z 市的航空基地计划举行一场特技飞行表演.表演的场地可以看作一个二维平面直角坐标系,其中横坐标代 ...
- 【LOJ】#3085. 「GXOI / GZOI2019」特技飞行
LOJ#3085. 「GXOI / GZOI2019」特技飞行 这显然是两道题,求\(C\)是一个曼哈顿转切比雪夫后的线段树扫描线 求\(AB\),对向交换最大化和擦身而过最大化一定分别为最大值和最小 ...
- 【GZOI 2019】特技飞行
Problem Description 公元 \(9012\) 年,Z 市的航空基地计划举行一场特技飞行表演.表演的场地可以看作一个二维平面直角坐标系,其中横坐标代表着水平位置,纵坐标代表着飞行高度. ...
- BZOJ2697: 特技飞行
2697: 特技飞行 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 607 Solved: 363[Submit][Status] Descript ...
- GX/GZOI2019 day2 解题报告
GX/GZOI2019 day2 解题报告 题目链接 逼死强迫症 旅行者 旧词 t1 逼死强迫症 显然地,记 \(f(i)\) 为长度为 \(i\) 的木板的答案,可得: \(\\\) \[f(i)= ...
随机推荐
- java内存机制 垃圾回收
gc机制一 1.JVM的gc概述 gc即垃圾收集机制是指jvm用于释放那些不再使用的对象所占用的内存.java语言并不要求jvm有gc,也没有规定gc如何工作.不过常用的jvm都有gc,而且大多数gc ...
- 关于Java中内省的总结
内省基于JavaBean规范对反射进行了封装,提供了更加便捷的通过getter/setter方法来访问字段的方式 Java内省的知识结构图 JavaBean的规范 JavaBean在现在可以认为就是普 ...
- dbcp连接池的一些方法
创建连接 // 简写版: Connection conn =null; Statement st =null; conn = DBCP.getConnection(); st=conn.createS ...
- SpringCloud学习之Feign 的使用(五)
Feign 是一个声明式的伪RPC的REST客户端,它用了基于接口的注解方式,很方便的客户端配置,刚开始使用时还不习惯,感觉是在客户端写服务端的代码,Spring Cloud 给 Feign 添加了 ...
- pytorch 数据操作
数据操作 在深度学习中,我们通常会频繁地对数据进行操作.作为动手学深度学习的基础,本节将介绍如何对内存中的数据进行操作. 在PyTorch中,torch.Tensor是存储和变换数据的主要工具.如果你 ...
- UVM实战[一]
一个新的连载系列,将以一个实际的UVM环境代码讲解的使用.机制等,更新周期会比较长. 文件说明 分享的文件是我个人和同学在参加复微杯大学生电子设计大赛中所完成的设计.赛题来自数字命题AI赛道,有兴趣可 ...
- maven项目从本地向本地仓库导入jar包
方法一(推荐): <dependency> <groupId>guagua-commons</groupId> <artifactId>guagua-c ...
- 小程序使用wxs 解决wxml保留2位小数问题
1.出现溢出表现 从图中可以看到数字超出了很长长度.代码里面是如下这样的.为什么在0.35出现?或者一些相成的计算出现? 而 0.34却不会. 0.41 也会出现,好像是二进制运算出现结果. data ...
- POJ-1308 Is It A Tree?(并查集判断是否是树)
http://poj.org/problem?id=1308 Description A tree is a well-known data structure that is either empt ...
- 直击JDD | 王振辉:技术是驱动物流革新的第一要素
"从物流基础设施的大规模智能迭代到产业供应链的数字化升级,物流行业从大而重变得'举重若轻',技术是驱动物流革新的第一要素."11月19日,京东物流集团CEO王振辉在2019京东全球 ...