快速傅里叶变换(FFT)
一、FFT的意义
DFT虽然实现了FT的计算机计算,但是计算量大,不适合实时的数字信号处理。FFT算法的出现,使DFT的计算效率更高,速度更快。
二、FFT与DFT的关系
从FT到DFT经过了数字角频率w的离散化,由此带来了一些数学公式的改写。而FFT是DFT算法上的突破,可以说数学理论上与DFT是一样的。可以认为,FFT就是DFT的一种快速好用的计算方法,FFT替代了定义法计算的笨拙,如此而已。正因为如此,所以可以看到FFT与DFT的运算结果是相同的。
三、matlab实验
1、程序
L=; %原离散信号有8点
n=[::L-] %原信号是1行8列的矩阵
xn=[ ]; %构建原始信号,为指数信号
subplot(,,);
stem(n,xn);
title('原信号'); N=;
i=[::N-];
Xk=fft(xn,N);
subplot(,,);
stem(i,abs(Xk));
title('FFT变换');
说明:
程序实现FFT的部分是直接调用matlab函数库中的fft()函数:
Xk=fft(xn,N);
至于它的算法详细实现,本人还未研究,待哪天空闲时再来补充。
2、实验结果

说明:从实验结果中可以看出,FFT的计算结果与DFT完全一样,也说明了FFT只是DFT的一种快速运算方法。
西电《数字信号处理》第三版
快速傅里叶变换(FFT)的更多相关文章
- 快速傅里叶变换FFT
多项式乘法 #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib ...
- [学习笔记] 多项式与快速傅里叶变换(FFT)基础
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...
- 快速傅里叶变换FFT& 数论变换NTT
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...
- 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...
- 快速傅里叶变换(FFT)
扯 去北京学习的时候才系统的学习了一下卷积,当时整理了这个笔记的大部分.后来就一直放着忘了写完.直到今天都腊月二十八了,才想起来还有个FFT的笔记没整完呢.整理完这个我就假装今年的任务全都over了吧 ...
- 快速傅里叶变换(FFT)_转载
FFTFFT·Fast Fourier TransformationFast Fourier Transformation快速傅立叶变换 P3803 [模板]多项式乘法(FFT) 参考上文 首 ...
- 基于python的快速傅里叶变换FFT(二)
基于python的快速傅里叶变换FFT(二)本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换. 知识点 FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法. ...
- 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理
浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理 标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值 只要稍微看 ...
- 快速傅里叶变换FFT / NTT
目录 FFT 系数表示法 点值表示法 复数 DFT(离散傅里叶变换) 单位根的性质 FFT(快速傅里叶变换) IFFT(快速傅里叶逆变换) NTT 阶 原根 扩展知识 FFT 参考blog: 十分简明 ...
- 【学习笔记】快速傅里叶变换(FFT)
[学习笔记]快速傅里叶变换 学习之前先看懂这个 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理--gzy hhh开个玩笑. 讲一下\(FFT\) ...
随机推荐
- c#基础语言编程-Path和Directory
引言 在程序常会对文件操作,在对文件操作中需要对文件路径的进行定位,在.Net中针对寻找文件提供两个静态类以供调用,Path和Directory. Path类 来自命名空间SYstem.IO,Path ...
- JAVA去掉字符串前面的0
最佳方案:使用正则 String str = "000000001234034120"; String newStr = str.replaceAll("^(0+)&qu ...
- 用 Qt 中的 QDomDocument类 处理 XML 文件(下)
QDomDocument doc; 1).创建根节点:QDomElement root = doc.documentElement("rootName " ); 2).创建元素 ...
- OC-KVO简介
一,概述 KVO,即:Key-Value Observing,它提供一种机制,当指定的对象的属性被修改后,则对象就会接受到通知.简单的说就是每次指定的被观察的对象的属性被修改后,KVO就会自动通知相应 ...
- mac tips
1. Mac Terminal color for different types 在 ~ 先建立一个文件 ~/.bash_profile 加入下面的两行:export CLICOLOR=1expo ...
- js中offsetHeight、clientHeight、scrollHeight等相关属性区分总结
今天再次遇到了offset***.client***.scroll***的这三类属性的问题,总是混淆,现归纳总结如下: 大体上来说可以这样理解: client***属性(clientWidth.cli ...
- Jquery方法load之后导致js失效解决方法
Jquery方法load之后导致js失效解决方法 >>>>>>>>>>>>>>>>>>> ...
- Python之路【第十四篇】:AngularJS --暂无内容-待更新
Python之路[第十四篇]:AngularJS --暂无内容-待更新
- js自定义方法名
自定义方法名: <script language="javascript" type="text/javascript">window.onload ...
- HTML5媒体播放说明
HTML5中video标签播放m3u8整理 http://www.xue163.com/588880/39097/390970871.html 移动端HTML5<video>视频播放优化实 ...