Musical Theme

Description

A musical melody is represented as a sequence of N (1<=N<=20000)notes that are integers in the range 1..88, each representing a key on the piano. It is unfortunate but true that this representation of melodies ignores the notion of musical timing; but, this programming task is about notes and not timings. 
Many composers structure their music around a repeating &qout;theme&qout;, which, being a subsequence of an entire melody, is a sequence of integers in our representation. A subsequence of a melody is a theme if it:

  • is at least five notes long
  • appears (potentially transposed -- see below) again somewhere else in the piece of music
  • is disjoint from (i.e., non-overlapping with) at least one of its other appearance(s)

Transposed means that a constant positive or negative value is added to every note value in the theme subsequence. 
Given a melody, compute the length (number of notes) of the longest theme. 
One second time limit for this problem's solutions! 

Input

The input contains several test cases. The first line of each test case contains the integer N. The following n integers represent the sequence of notes. 
The last test case is followed by one zero. 

Output

For each test case, the output file should contain a single line with a single integer that represents the length of the longest theme. If there are no themes, output 0.

Sample Input

30
25 27 30 34 39 45 52 60 69 79 69 60 52 45 39 34 30 26 22 18
82 78 74 70 66 67 64 60 65 80
0

Sample Output

5

Hint

Use scanf instead of cin to reduce the read time.

【题意】

  有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复的主题。“主题”是整个音符序列的一个子串,它需要满足如下条件:

1.长度至少为5个音符。

2.在乐曲中重复出现。(可能经过转调,“转调”的意思是主题序列中每个音符都被加上或减去了同一个整数值)

3.重复出现的同一主题不能有公共部分。

【分析】

  二分答案,根据二分出来的答案分组,判断组内最小和最大位置的差是否大于长度即可。

代码如下:(以前的代码)

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std; int sa[],rank[],y[],Rsort[];
int wr[],a[],height[],n; bool cmp(int k1,int k2,int ln){return wr[k1]==wr[k2] && wr[k1+ln]==wr[k2+ln];} void get_sa(int m)
{
int i,k,p,ln; memcpy(rank,a,sizeof(rank)); memset(Rsort,,sizeof(Rsort));
for (i=;i<=n;i++) Rsort[rank[i]]++;
for (i=;i<=m;i++) Rsort[i]+=Rsort[i-];
for (i=n;i>=;i--) sa[Rsort[rank[i]]--]=i; ln=; p=;
while (p<n)
{
for (k=,i=n-ln+;i<=n;i++) y[++k]=i;
for (i=;i<=n;i++) if (sa[i]>ln) y[++k]=sa[i]-ln;
for (i=;i<=n;i++) wr[i]=rank[y[i]]; memset(Rsort,,sizeof(Rsort));
for (i=;i<=n;i++) Rsort[wr[i]]++;
for (i=;i<=m;i++) Rsort[i]+=Rsort[i-];
for (i=n;i>=;i--) sa[Rsort[wr[i]]--]=y[i]; memcpy(wr,rank,sizeof(wr));
p=; rank[sa[]]=;
for (i=;i<=n;i++)
{
if (!cmp(sa[i],sa[i-],ln)) p++;
rank[sa[i]]=p;
}
m=p; ln*=;
}
a[]=sa[]=;
} void get_he()
{
int i,j,k=;
for (i=;i<=n;i++)
{
j=sa[rank[i]-];
if (k) k--; while (a[j+k]==a[i+k]) k++;
height[rank[i]]=k;
}
} bool check(int k)
{
int i,maxx=,minn=;
for(i=;i<=n;i++)
{
if(height[i]<k) maxx=minn=sa[i];
else
{
if(sa[i]>maxx) maxx=sa[i];
if(sa[i]<minn) minn=sa[i];
if(maxx-minn>k) return ;
}
}
return ;
} int hd_work()
{
int l,r,mid,ans=;
l=;r=n;
while(l<=r)
{
mid=(l+r)/;
if(check(mid))
{
l=mid+;
ans=mid;
}
else r=mid-;
}
if(ans>=) ans++;
else ans=;
return ans;
} int main()
{
int i,a1,a2;
while()
{
scanf("%d",&n);
if(n==) break;
scanf("%d",&a1);
for(i=;i<=n;i++)
{
scanf("%d",&a2);
a[i-]=a2-a1+;
a1=a2;//做差
}
n--;
get_sa();
get_he();
printf("%d\n",hd_work());
}
}

[POJ1743]

2016-07-20 15:31:18

【POJ1743】 Musical Theme (二分+后缀数组)的更多相关文章

  1. POJ-1743 Musical Theme,后缀数组+二分!

                                                        Musical Theme 人生第一道后缀数组的题,采用大众化思想姿势极其猥琐. 题意:给你n个 ...

  2. poj1743 Musical Theme【后缀数组】【二分】

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 35044   Accepted: 11628 D ...

  3. POJ1743 Musical Theme (后缀数组 & 后缀自动机)最大不重叠相似子串

    A musical melody is represented as a sequence of N (1<=N<=20000)notes that are integers in the ...

  4. POJ 1743 Musical Theme 二分+后缀数组

    Musical Theme   Description A musical melody is represented as a sequence of N (1<=N<=20000)no ...

  5. poj1743 Musical Theme(后缀数组|后缀自动机)

      [题目链接] http://poj.org/problem?id=1743     [题意]     求不可重叠最长重复子串.   2015-11-27 [思路] 1)      据题意处理字符串 ...

  6. 【POJ1743】Musical Theme(后缀数组)

    [POJ1743]Musical Theme(后缀数组) 题面 洛谷,这题是弱化版的,\(O(n^2)dp\)能过 hihoCoder 有一点点区别 POJ 多组数据 题解 要求的是最长不可重叠重复子 ...

  7. POJ 1743 Musical Theme(后缀数组+二分答案)

    [题目链接] http://poj.org/problem?id=1743 [题目大意] 给出一首曲子的曲谱,上面的音符用不大于88的数字表示, 现在请你确定它主旋律的长度,主旋律指的是出现超过一次, ...

  8. POJ 1743 Musical Theme (后缀数组,求最长不重叠重复子串)(转)

    永恒的大牛,kuangbin,膜拜一下,Orz 链接:http://www.cnblogs.com/kuangbin/archive/2013/04/23/3039313.html Musical T ...

  9. POJ 1743 Musical Theme 【后缀数组 最长不重叠子串】

    题目冲鸭:http://poj.org/problem?id=1743 Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Su ...

  10. P2743(poj1743) Musical Themes[差分+后缀数组]

    P2743 乐曲主题Musical Themes(poj1743) 然后呢这题思路其实还是蛮简单的,只是细节特别多比较恶心,忘记了差分带来的若干疏漏.因为转调的话要保证找到相同主题,只要保证一段内相对 ...

随机推荐

  1. java新手笔记11 类的静态属性、方法(单例)

    1.Person类 package com.yfs.javase; public class Person { String name;//每个对象上分配 与对象绑定 int age; char se ...

  2. java Email发送及中文乱码处理。

    public class mail { private String pop3Server=""; private String smtpServer=""; ...

  3. javascript面向对象程序设计系列(一)---创建对象

    javascript是一种基于对象的语言,但它没有类的概念,所以又和实际面向对象的语言有区别,面向对象是javascript中的难点之一.现在就我所理解的总结一下,便于以后复习: 一.创建对象 1.创 ...

  4. 使用ibatis时 sql中 in 的参数赋值

    一.问题描述: 1.在使用ibatis执行下面的sql: update jc_jiesuan set doing_time = unix_timestamp(curdate()),doing_stat ...

  5. jQuery的基础语法实例

    jQuery 基础语法 jQuery 语法是为 HTML 元素的选取编制的,可以对元素执行某些操作. 基础语法是:$(selector).action() 美元符号定义 jQuery 选择符(sele ...

  6. 使用jeesite org.springframework.beans.NotReadablePropertyException: Invalid property 'tfxqCmsAccount.id' of bean class

    一对多 对子表添加时在form表单 path="tfxqCmsAccount.id"页面报错,对比了下其他可行的,发现其自动生成的子类少了个构造方法 加上 public TfxqC ...

  7. Spring+Maven+Eclipse构建Web工程

    转载请注明出处:http://www.cnblogs.com/lidabnu/p/5657439.html 1 环境准备 下载Eclipse:http://www.eclipse.org/downlo ...

  8. maven使用之烦人的.lastUpdated文件

    项目使用maven管理jar包,很容易因为各种原因(网速慢.断网)导致jar包下载不下来,出现很多.lastUpdated文件.这些文件一个一个删除太麻烦.下面是全部删除的方法 windows系统 c ...

  9. Linux Install Node.js

    1.下载node.js安装包,请参考网址:http://nodejs.org/download/ 在这个网址里面提供了几种node.js安装的方式 https://github.com/joyent/ ...

  10. 快速排序 javascript实现

    Quicksort(快速排序) 是由 东尼·霍尔 所发展的一种排序. 它比其他的Ο(n log n)算法更快, 因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来.当然, ...