大数据算法设计模式(1) - topN spark实现
topN算法,spark实现
package com.kangaroo.studio.algorithms.topn; import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.broadcast.Broadcast;
import scala.Tuple2; import java.io.Serializable;
import java.util.*; public class TopNSpark implements Serializable { private JavaSparkContext jsc;
Broadcast<Integer> topNum;
private String inputPath; /*
* 构造函数
* 1. 初始化JavaSparkContext
* 2. 初始化广播变量topN个数, 可以被所有partition共享
* 3. 初始化输入路径
* */
public TopNSpark(Integer Num, String path) {
jsc = new JavaSparkContext();
topNum = jsc.broadcast(Num);
inputPath = path;
} /*
* 程序入口函数
* */
public void run() {
/*
* 读入inputPath中的数据
* */
JavaRDD<String> lines = jsc.textFile(inputPath, 1); /*
* 将rdd规约到9个分区
* */
JavaRDD<String> rdd = lines.coalesce(9); /*
* 将输入转化为kv格式
* key是规约的主键, value是排序参考的个数
* 注: 这里的key并不唯一, 即相同的key可能有多条记录, 所以下面我们规约key成唯一键
* 输入:line, 输出:kv
* */
JavaPairRDD<String, Integer> kv = rdd.mapToPair(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String s) throws Exception {
String[] tokens = s.split(",");
return new Tuple2<String, Integer>(tokens[0], Integer.parseInt(tokens[1]));
}
}); /*
* 规约主键成为唯一键
* 输入:kv, 输出:kv
* */
JavaPairRDD<String, Integer> uniqueKeys = kv.reduceByKey(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer i1, Integer i2) throws Exception {
return i1 + i2;
}
}); /*
* 计算各个分区的topN
* 这里通过广播变量拿到了topN具体个数, 每个分区都保留topN, 所有分区总个数: partitionNum * topN
* 输入:kv, 输出:SortMap, 长度topN
* */
JavaRDD<SortedMap<Integer, String>> partitions = uniqueKeys.mapPartitions(new FlatMapFunction<Iterator<Tuple2<String,Integer>>, SortedMap<Integer, String>>() {
public Iterable<SortedMap<Integer, String>> call(Iterator<Tuple2<String, Integer>> iter) throws Exception {
final int N = topNum.getValue();
SortedMap<Integer, String> topN = new TreeMap<Integer, String>();
while (iter.hasNext()) {
Tuple2<String, Integer> tuple = iter.next();
topN.put(tuple._2, tuple._1); if (topN.size() > N) {
topN.remove(topN.firstKey());
}
}
return Collections.singletonList(topN);
}
}); /*
* 规约所有分区的topN SortMap, 得到最终的SortMap, 长度topN
* reduce过后, 数据已经到了本地缓存, 这是最后结果
* 输入: SortMap, 长度topN, 当然有partitionNum个, 输出:SortMap, 长度topN
* */
SortedMap<Integer, String> finalTopN = partitions.reduce(new Function2<SortedMap<Integer, String>, SortedMap<Integer, String>, SortedMap<Integer, String>>() {
public SortedMap<Integer, String> call(SortedMap<Integer, String> m1, SortedMap<Integer, String> m2) throws Exception {
final int N = topNum.getValue();
SortedMap<Integer, String> topN = new TreeMap<Integer, String>();
for (Map.Entry<Integer, String> entry : m1.entrySet()) {
topN.put(entry.getKey(), entry.getValue());
if (topN.size() > N) {
topN.remove(topN.firstKey());
}
}
for (Map.Entry<Integer, String> entry : m2.entrySet()) {
topN.put(entry.getKey(), entry.getValue());
if (topN.size() > N) {
topN.remove(topN.firstKey());
}
}
return topN;
}
}); /*
* 将本地缓存的最终结果打印出来
* */
for (Map.Entry<Integer, String> entry : finalTopN.entrySet()) {
System.out.println(entry.getKey() + " -- " + entry.getValue());
}
} public static void main(String[] args) {
/*
* topN个数:topN
* 输入数据路径:inputPath
* */
Integer topN = Integer.parseInt(args[0]);
String inputPath = args[1];
TopNSpark topNSpark = new TopNSpark(topN, inputPath);
topNSpark.run();
}
}
大数据算法设计模式(1) - topN spark实现的更多相关文章
- 大数据算法设计模式(2) - 左外链接(leftOuterJoin) spark实现
左外链接(leftOuterJoin) spark实现 package com.kangaroo.studio.algorithms.join; import org.apache.spark.api ...
- 大数据系列之并行计算引擎Spark介绍
相关博文:大数据系列之并行计算引擎Spark部署及应用 Spark: Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎. Spark是UC Berkeley AMP lab ( ...
- 大数据平台搭建(hadoop+spark)
大数据平台搭建(hadoop+spark) 一.基本信息 1. 服务器基本信息 主机名 ip地址 安装服务 spark-master 172.16.200.81 jdk.hadoop.spark.sc ...
- 大数据算法->推荐系统常用算法之基于内容的推荐系统算法
港真,自己一直非常希望做算法工程师,所以自己现在开始对现在常用的大数据算法进行不断地学习,今天了解到的算法,就是我们生活中无处不在的推荐系统算法. 其实,向别人推荐商品是一个很常见的现象,比如我用了一 ...
- 大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 图文详解
引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单 ...
- 大数据系列之并行计算引擎Spark部署及应用
相关博文: 大数据系列之并行计算引擎Spark介绍 之前介绍过关于Spark的程序运行模式有三种: 1.Local模式: 2.standalone(独立模式) 3.Yarn/mesos模式 本文将介绍 ...
- CentOS6安装各种大数据软件 第十章:Spark集群安装和部署
相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...
- 大数据学习(24)—— Spark入门
在学Spark之前,我们再回顾一下MapReduce的知识,这对我们理解Spark大有裨益. 在大数据的技术分层中,Spark和MapReduce同为计算层的批处理技术,但是Spark比MapRedu ...
- 大数据学习系列之六 ----- Hadoop+Spark环境搭建
引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合 ...
随机推荐
- Django1.10主题指南—模型
模型是你的数据的唯一的.权威的信息源.它包含你所储存数据的必要字段和操作行为.通常,每个模型都对应着数据库中的唯一一张表. 基础认识: 每个model都是一个继承 django.db.models.M ...
- 【★】KMP算法完整教程
KMP算法完整教程 全称: Knuth_Morris_Pratt Algorithm(KMP算法) 类型: ...
- 团队作业8----第二次项目冲刺(Beta阶段) 第六天
BETA阶段冲刺第六天 1.小会议ing 2.每个人的工作 (1)昨天已完成的工作 重复部分可以用红色字体显示 (2) 今天计划完成的工作 (3) 工作中遇到的困难: 尤少辉:在测试的时候,当队友提出 ...
- 201521123093 java 第七周学习总结
1. 本周学习总结 2. 书面作业 1.ArrayList代码分析 1.1 解释ArrayList的contains源代码 //contains()方法 public boolean contains ...
- 201521123105 第六周Java学习总结
1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图,对面向对象思想进行一个总结. 2. 书面作业 1.clone方法1.1 Object对象 ...
- We Talk -- 团队博客
WeTalk --在线群聊程序 团队博客 服务器一直在运行,使用客户端可直接登入使用.(做得很粗糙...) 客户端下载(java环境下直接运行) 0.项目介绍 现在我们网上交流离不开微信和QQ,当然在 ...
- Java 最常用类(前1000名) 来自GitHub 3000个项目
这篇文章主要介绍了最常用的1000个Java类(附代码示例),需要的朋友可以参考下 分析Github 3000个开源项目,粗略统计如下.括号内的数字是使用频率 0-3000. 下面的列表显示不全,完整 ...
- Mybatis第九篇【基于Maven在Idea下Mybatis逆向工程】
前言 在Intellij idea下,没有学习Maven的情况下使用Mybatis的逆向工程好像有点复杂,资料太少了-找到的资料好像也行不通- 于是学完Maven之后,我就再来更新Idea下使用Myb ...
- SpringMVC第五篇【方法返回值、数据回显、idea下配置虚拟目录、文件上传】
Controller方法返回值 Controller方法的返回值其实就几种类型,我们来总结一下-. void String ModelAndView redirect重定向 forward转发 数据回 ...
- OSGi-入门篇之服务层(03)
前言 作为OSGi框架中最上面的一层,服务层带给了我们更多的动态性,并且使用了大家或多或少都曾了解过的面向服务编程模型,其好处是显而易见的. 1 什么是服务 简单的说,服务就是“为别人所做的工作”,比 ...