Divisibility


Time Limit: 2 Seconds      Memory Limit:65536 KB

Consider an arbitrary sequence of integers. One can place + or - operators between integers in the sequence, thus deriving different arithmetical expressions that evaluate to different values. Let us, for example, take the sequence: 17, 5, -21, 15. There are eight possible expressions:

17 + 5 + -21 + 15 = 16
17 + 5 + -21 - 15 = -14
17 + 5 - -21 + 15 = 58
17 + 5 - -21 - 15 = 28
17 - 5 + -21 + 15 = 6
17 - 5 + -21 - 15 = -24
17 - 5 - -21 + 15 = 48
17 - 5 - -21 - 15 = 18

We call the sequence of integers divisible by K if + or - operators can be placed between integers in the sequence in such way that resulting value is divisible by K. In the above example, the sequence is divisible by 7 (17+5+-21-15=-14) but is not divisible
by 5.

You are to write a program that will determine divisibility of sequence of integers.

Input

The first line of the input contains two integers, N and K (1 <= N <= 10000, 2 <= K <= 100) separated by a space.

The second line contains a sequence of N integers separated by spaces. Each integer is not greater than 10000 by it's absolute value.

Output

Write to the output file the word "Divisible" if given sequence of integers is divisible by K or "Not divisible" if it's not.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.


Sample Input

2

4 7
17 5 -21 15

4 5
17 5 -21 15

Sample Output

Divisible

Not divisible

【问题分析】http://blog.csdn.net/tsaid/article/details/7840487(可怜原作者不晓得输出的恶心换行套路,找错绝对很头疼)

看到题目第一个反映就是枚举中间添的运算符,算出值在MOD K如果有一个值MOD K=0则输出“Divisible”。

时间复杂度是O(2N-1)。

但是题目给出的数据量很大,这样做效率太低了。

因为题目涉及MOD运算,要想简化问题就需要知道一些基本的MOD运算性质:

A*B mod C=(A mod C*B mod C) mod C

(A+B) mod C=(A mod C+B mod C) mod C

有了这个性质,我们就可以把累加后求余转化成求余后累加(我们把减法看作加负数以后分析只说加法)再求余。这样我们的读入数据就控制在了1-K到K-1的范围内了。

我们要判断的就是

所有结果的累加和 MOD K 是否为0。简记为:

(A+B)mod K=0 or (A+B) mod K<>0

如果我们按数的个数划分阶段,前N-1个数的运算结果 MOD K看做A,第N个数看作B就OK了。

于是我们想到了这样的状态:opt[i,j]表示前i个数是否可以得到余数为J的结果。

那么状态转移方程就是

opt[i,(j-a[i] mod k )modk]=opt[i-1,j]           (opt[i-1,j]=true);

opt[i,(j+a[i] mod k) modk]=opt[i-1,j]          (opt[i-1,j]=true);

如果opt[n,0]=true就输出‘Divisible’

我一开始想用滚动数组来解决(尽管没有这个必要)。

a[1][(x%k+k)%k]=true;
for(int i=2;i<=n;i++)
{
cin>>x;//=_S();
for(int j=0;j<k;j++)
{
if(a[(i-1)%2][j])
{
a[i%2][((j+x)%k+k)%k]=true;
a[i%2][((j-x)%k+k)%k]=true;
}
}
}
if(a[n%2][0]==true) printf("Divisible\n");
else printf("Not divisible\n");
if(T) printf("\n");

然后一直wa,后来发现滚动数组必须每次刷新,很尴尬,反而使得效率低下。如下:

 memset(a[1],false,sizeof(a[1]));
x=_S();
a[1][(x%k+k)%k]=true;
for(int i=2;i<=n;i++)
{
memset(a[i%2],false,sizeof(a[i%2]));
x=_S();
for(int j=0;j<k;j++)
{
if(a[(i-1)%2][j])
{
a[i%2][((j+x)%k+k)%k]=true;
a[i%2][((j-x)%k+k)%k]=true;
}
}
}
if(a[n%2][0]) printf("Divisible\n");
else printf("Not divisible\n");
if(T) printf("\n");

就是memset这个可恶的东西,然后改了一下:

                a[1][(x%k+k)%k]=1;
for(int i=2;i<=n;i++)
{
x=_S();
for(int j=0;j<k;j++)
{
if(a[(i-1)%2][j]==i-1)//用唯一的数字标记,不需要更新
{
a[i%2][((j+x)%k+k)%k]=i;
a[i%2][((j-x)%k+k)%k]=i;
}
}
}
if(a[n%2][0]==n) printf("Divisible\n");
else printf("Not divisible\n");
if(T) printf("\n");

但是搞来搞去,好像效率还是不怎么样,不过数字代替memset的思路是挺好的。

建议赛场上还是开a[10001][101]的数组,免得乱搞麻烦。

完整代码:100ms,还算可以了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<memory.h>
#include<cmath>
using namespace std;
int a[2][101];
int _S()
{
char c=getchar();
while(c<'0'||c>'9')
c=getchar();
int s=0;
while(c>='0'&&c<='9'){
s=s*10+c-'0';
c=getchar();
}
return s;
}
int main()
{
int T,k,x,n;
T=_S();
while(T--)
{ n=_S();
k=_S();
memset(a,0,sizeof(a));
x=_S();
a[1][x%k]=1;
for(int i=2;i<=n;i++)
{
x=_S();
for(int j=0;j<k;j++)
{
if(a[(i-1)%2][j]==i-1)
{
a[i%2][(j+x)%k]=i;
a[i%2][((j-x)%k+k)%k]=i;
}
}
}
if(a[n%2][0]==n) printf("Divisible\n");
else printf("Not divisible\n");
if(T) printf("\n");
}
return 0;
}

ZOJ 2042 Divisibility (DP)的更多相关文章

  1. ZOJ - 2042 模运算DP

    解法见网上参考 这种只判断可达性的DP一般用bool 除非int能得到更多的信息 #include<iostream> #include<algorithm> #include ...

  2. ZOJ 3626(树形DP+背包+边cost)

    题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3626 题目大意:树中取点.每过一条边有一定cost,且最后要回 ...

  3. zoj 3822 Domination(dp)

    题目链接:zoj 3822 Domination 题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望. 解题思路:大白书上概率那一张有一 ...

  4. ZOJ 3201 树形dp+背包(简单题)

    #include<cstdio> #include<vector> #include<cstring> #include<iostream> using ...

  5. ZOJ 3805 (树形DP)

    题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5337 题目大意:方块连接,呈树形.每个方块有两种接法,一种接在父块 ...

  6. ZOJ 3822 可能性DP

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3822 本场比赛之前,我记得.见WALK概率路DP称号.那么它应该是可以考虑 ...

  7. zoj 3640 概率dp

    题意:一只吸血鬼,有n条路给他走,每次他随机走一条路,每条路有个限制,如果当时这个吸血鬼的攻击力大于等于某个值,那么就会花费t天逃出去,否则,花费1天的时间,并且攻击力增加,问他逃出去的期望 用记忆化 ...

  8. ZOJ 3211dream city dp(效率优化)

    Dream City Time Limit: 1 Second      Memory Limit:32768 KB JAVAMAN is visiting Dream City and he see ...

  9. zoj 3537 区间dp+计算几何

    题意:给定n个点的坐标,先问这些点是否能组成一个凸包,如果是凸包,问用不相交的线来切这个凸包使得凸包只由三角形组成,根据costi, j = |xi + xj| * |yi + yj| % p算切线的 ...

随机推荐

  1. Mock Server 入门

    Mock Server介绍 什么是mock ? 我在去年的时候介绍一篇幅 python mock的基本使用,http://www.cnblogs.com/fnng/p/5648247.html 主要是 ...

  2. Bash 脚本进阶,经典用法及其案例

    前言:在linux中,Bash脚本是很基础的知识,大家可能一听脚本感觉很高大上,像小编当初刚开始学一样,感觉会写脚本的都是大神.虽然复杂的脚本是很烧脑,但是,当我们熟练的掌握了其中的用法与技巧,再多加 ...

  3. 九度OJ 1017 还是畅通工程

    #include <iostream> #include <string.h> #include <sstream> #include <math.h> ...

  4. 团队作业1——团队展示&博客作业查重系统

    团队展示: 1.队名:六个核桃 2.队员学号: 王婧(201421123065).柯怡芳(201421123067组长).陈艺菡(201421123068). 钱惠(201421123071).尼玛( ...

  5. 【Alpha】第七次Daily Scrum Meeting

    GIT 一.今日站立式会议照片        二.会议内容 1.讨论送礼物的方法和对象,使功能更加完善. 2.对于程序还存在的问题提出自己的看法,尽量让功能更加的饱满. 三.燃尽图 四.遇到的困难 能 ...

  6. JTable用法-实例

    前几篇文章介绍了JTable的基本用法,本文实现一个简单的JTable,算是前文的一个总结,并造福供拷贝党们. Swing-JTable用法-入门 Swing-JTable的渲染器与编辑器使用demo ...

  7. 201521123061 《Java程序设计》第十二周学习总结

    201521123061 <Java程序设计>第十二周学习总结 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 2. 书面作业 将Student对 ...

  8. 201521123045 《Java程序设计》第6周学习总结

    Java 第六周总结 1. 本周学习总结 1.1 面向对象学习暂告一段落,请使用思维导图,以封装.继承.多态为核心概念画一张思维导图,对面向对象思想进行一个总结.注1:关键词与内容不求多,但概念之间的 ...

  9. 201521123025 《Java程序设计》第2周学习总结

    1. 本章学习总结 一些注意: (1)在JAVA中,不加后缀的浮点数被默认为double型,如果要用float型就要在数据后加上f或F后缀,如float a=32.6f(正确);float a=32. ...

  10. Markdown例子

    一个例子: 例子开始 1. 本章学习总结 今天主要学习了三个知识点 封装 继承 多态 2. 书面作业 Q1. java HelloWorld命令中,HelloWorld这个参数是什么含义? 今天学了一 ...