cs231n spring 2017 lecture4 Introduction to Neural Networks 听课笔记
1. Backpropagation:沿着computational graph利用链式法则求导。每个神经元有两个输入x、y,一个输出z,好多层这种神经元连接起来,这时候已知∂L/∂z,可以求出∂L/∂x = ∂L/∂z * ∂z/∂x,∂L/∂y = ∂L/∂z * ∂z/∂y。靠这种方式可以计算出最终的loss function相对于最开始的输入的导数。
这种方法的好处是,每个神经元都是很简单的运算(比如加、减、乘、除、指数、sigmoid等),它们导数的解析式是很容易求解的,用链式法则连乘起来就得到了我们需要的导数。如果直接求的话会很复杂很难求。
2. Add(x, y)是gradient distributor,把后面神经元的导数反向传递给x和y。
Max(x, y)是gradient router,它只会反向传递给x、y中大的那一个。可以这么直观的理解,由于只有x、y中大的那个数被传递到后面的神经元对最后结果产生影响,所以在反向传递的时候,也只会评估x、y中大的那个数。
Mul(x, y)是gradient switcher,它把后面神经元的导数分别传递给x和y,传给x的部分乘以y,传给y的部分乘以x。
想想求导公式就明白了。
3. 对于一个输入x,两个输出y、z的神经元,反向传递求导的时候,是把从y和z两路反向传递过来的导数求和。
4. 如果x、y、z等元素都不是标量,而是向量,则求导全部都变成了雅克比矩阵。对于一个4096维输入,4096维输出的系统,雅克比大小为4096*4096,如果minibatch里100个采样,则雅克比变成了409600*409600大小,运算很麻烦。但如果知道输出的某个元素只和输入的某些元素相关,则求偏导的时候只有相关项有值,其他都是0,这个性质可以被用来加速计算。极端的情况,如果输入和输出一一对应,则雅克比是对角矩阵。
5. 深度学习框架(比如Caffe等)的API里,会定义不同的layer,每种layer就是搭神经网络的积木(也就是上文说的神经元节点),每种layer会有自己的forward()/backward()函数,分别用来正向的从输入求出输出,和反向的求loss funciton对这个节点输入的导数。
6. 神经网络,从函数的角度说就是复合函数,把简单函数一层层堆叠起来。例如线性函数f=Wx,则两层的神经网络可能是f=W2max(0,W1x),三层的网络可能是f=W3max(0, W2max(0,W1x))。直观地说,比如在物体分类的问题中,第一层网络训练出的权重可能是一个红色的车的template,而第二层网络的权重可能是不同的颜色,这样两层网络就实现了泛化预测各种颜色的车的目的。
7. 从生物学的角度看,sigmoid函数是非常有道理的,它意味着输入进来的信号不够强的时候输出为0,神经元没有被激活,足够强之后,神经元被激活从而产生输出。ReLU:f(x) = max(0, x)也是同样的想法。这些都是“激活函数”。所以深度学习中实际构造的神经元,通常是一个线性单元复合一个激活函数sigmoid(Wx+b)。
8. 虽然深度学习从脑科学得到了很多启发,但是我们要谨慎的把两者做直接类比,因为生物神经元要复杂的多。
cs231n spring 2017 lecture4 Introduction to Neural Networks 听课笔记的更多相关文章
- cs231n spring 2017 lecture4 Introduction to Neural Networks
1. Backpropagation:沿着computational graph利用链式法则求导.每个神经元有两个输入x.y,一个输出z,好多层这种神经元连接起来,这时候已知∂L/∂z,可以求出∂L/ ...
- cs231n spring 2017 lecture3 Loss Functions and Optimization 听课笔记
1. Loss function是用来量化评估当前预测的好坏,loss function越小表明预测越好. 几种典型的loss function: 1)Multiclass SVM loss:一般的S ...
- cs231n spring 2017 lecture10 Recurrent Neural Networks 听课笔记
(没太听明白,下次重新听一遍) 1. Recurrent Neural Networks
- cs231n spring 2017 lecture1 Introduction to Convolutional Neural Networks for Visual Recognition 听课笔记
1. 生物学家做实验发现脑皮层对简单的结构比如角.边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统.1970年David Marr提出的视觉处理流程遵循这样的原则,拿 ...
- cs231n spring 2017 lecture1 Introduction to Convolutional Neural Networks for Visual Recognition
1. 生物学家做实验发现脑皮层对简单的结构比如角.边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统.1970年David Marr提出的视觉处理流程遵循这样的原则,拿 ...
- cs231n spring 2017 lecture5 Convolutional Neural Networks听课笔记
1. 之前课程里,一个32*32*3的图像被展成3072*1的向量,左乘大小为10*3072的权重矩阵W,可以得到一个10*1的得分,分别对应10类标签. 在Convolution Layer里,图像 ...
- cs231n spring 2017 lecture10 Recurrent Neural Networks
(没太听明白,下次重新听一遍) 1. Recurrent Neural Networks
- cs231n spring 2017 lecture12 Visualizing and Understanding 听课笔记
这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域 ...
- cs231n spring 2017 lecture9 CNN Architectures 听课笔记
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
随机推荐
- 《TCP-IP详解卷2:实现》【PDF】下载
<TCP-IP详解卷2:实现>[PDF]下载链接: https://u253469.pipipan.com/fs/253469-230062539 内容简介 <TCP/IP详解·卷2 ...
- 运算符关键字。数据区别大小写。日期范围。判空的两种写法。NOT IN的两种写法。IN范围可含NULL,但NOT IN值范围不能含NULL。
比较:>,<,=,>=,<=,<>(!=) 逻辑:AND,OR,NOT 范围:BETWEEN...AND... 范围:IN,NOT IN 判空:IS NULL, I ...
- iOS 常用到的宏#define
//AppDelegate #define APPDELEGATE [(AppDelegate*)[UIApplication sharedApplication] delegate] //----- ...
- JAVA 解析、编辑nginx.conf
最近工程开发遇到一个需求:用Java去解析并编辑nginx.conf 在github上找到nginx-java-parser工具,项目地址:https://github.com/odiszapc/ng ...
- Java零碎总结
获取当前类运行的根目录(即classpath,如bin.classes.AppName等)的方式有: 1.Thread.currentThread().getContextClassLoader(). ...
- 使用requests爬取猫眼电影TOP100榜单
Requests是一个很方便的python网络编程库,用官方的话是"非转基因,可以安全食用".里面封装了很多的方法,避免了urllib/urllib2的繁琐. 这一节使用reque ...
- Servlet与Jsp的结合使用实现信息管理系统一
PS:1:先介绍一下什么是Servlet? Servlet(Server Applet)是Java Servlet的简称,称为小服务程序或服务连接器,用Java编写的服务器端程序,主要功能在于交互式地 ...
- ES6 正则的扩展
1. RegExp构造函数 ES5中,RegExp构造函数的参数: 参数是字符串,这时第二个参数表示正则表达式的修饰符(flag) 参数是一个正则表示式,这时会返回一个原有正则表达式的拷贝.但是,ES ...
- CentOS7.2 使用Shell安装Oracle12c
一.操作系统说明 1.操作系统 版本 2.磁盘分区用量 二.安装必要的软件包 for pkg in 'binutils' 'compat-libcap1' 'compat-libstdc++-33' ...
- MyBatis小抄
持续更新中. Every MyBatis application centers around an instance of SqlSessionFactory A cleaner approch t ...