本小节笔记大纲:

  • 1.Communication patterns

    • gather,scatter,stencil,transpose
  • 2.GPU hardware & Programming Model
    • SMs,threads,blocks,ordering
    • Synchronization
    • Memory model: local, shared, global
    • Atomic Operation
  • 3.Efficient GPU Programming
    • Access memory faster

      • coalescing global memory
      • use faster memory
    • Avoid thread divergence

一、Communication Patterns

1.Patterns

  • Map

map很好理解,其实就是映射,也就是输入和输出一一对应,一个萝卜一个坑

  • Gather

Gather中文名为收集,是将若干个输入数据经过计算后得到一个输出值,如图左示。很典型的应用就是比如说对于一个图像,我们需要每一个像素值是其四周像素的平均值。

  • Scatter

    scatter的特点是每个线程一次会向内存输出多个值,也可能多个线程向一个内存输出值。

  • Stencil

    Stencil表示模板的意思,所以也就是计算的时候用模子来选择输入数据,看下图就清楚了

  • Transpose

    其实就是转置啦~

具体应用实例如下:

在C语言中,加入我们定义了如上图示的一个结构体,包含float和int两种变量,然后我们又定义了一个该结构体的变量数组,一般来说其在内存中是像上面那样排列的,强迫症看起来是不是不舒服,而且这种排列方式比较浪费空间,所以通过转置后形成下面的排列方式后既美观又使运算加速了,岂不美哉?

2.练习题

  • 第一个很简单就是map,不仔细解释了
  • 第二个个表达式我之前脑袋一热就选了C。。但是要注意,scatter的特点是每个线程一次会向内存输出多个值,这显然不符合该特点,而应该是Transpose。
  • 第三个就是scatter了,原因如上
  • 最后一个很容易选stencil,但是你要注意if条件语句的限制,所以应该是Gather。

3.总结神图

二、GPU Hardware

1.问题导向

  • 线程是如何有效地一致访问内存

    • 子话题:如何利用数据重用
  • 线程如何通过共享内存通信部分结果

2.硬件组成

如图示,GPU由若干个SM(Stream Multiprocessor流多处理器)组成,而每个SM又包含若干个SP(教材上是Stream Processor流处理器,改视频中是simple processor),anyway...开心就好,管他叫什么名字~

GPU的作用是负责分配线程块在硬件SM上运行,所有SM都以并行独立的方式运行。

下面做一下题目吧:

解析:

  • 1正确.一个线程块包含许多线程
  • 2正确.一个SM可能会运行多个多个线程块
  • 3错误,因为一个线程块无法在一个以上的SM上运行
  • 4正确,在一个线程块上所有线程有可能配合起来解决某个子问题
  • 5错误,一个SM上可能有多个线程块,但是根据定义,线程和不同的线程块不应该存在协作关系。

3.程序员与GPU分工

另外需要注意的是程序员负责定义线程块,而GPU则负责管理硬件,因此程序员不能指定线程块的执行顺序,也不能指定线程块在某一特定的SM上运行。

这样设计的好处如下:

  • 硬件可以运行的更加有效率
  • 运行切换不需要等待,一旦一个线程块运行完毕,SM可以自动的将另一个线程块加载进来
  • 最大的优势:可扩展性,因为可以自动分配硬件资源,所以向下到单个SM,上到超级计算机的大量SM,均可以很好的适应。

有如上好处的同时,自然也就有局限性:

  • 对于哪个块在哪个SM上运行无法进行任何假设
  • 无法获得块之间的明确的通信

4.GPU Memory Model

如图示

  • 每个线程都有它自己的本地内存(local memory)
  • 线程块有一个共享内存(shared memory),块中所有线程都可以访问该内存中的数据
  • GPU中的全局内存(global memory) 是所有线程块中的线程都能访问的内存,也是CPU进行数据传递的地方。

访问速度:

local memory > shared memory > global

例题:

解析:

s,t,u是本地内存中的变量,所以t=s最先运行,同理可以排除其他代码运行顺序。

注意:这只是为了说明访问速度出的例题,实际情况中,编译器可能会做出相应的调整来达到我们的目的

5.Sychronization

说道线程,很自然我们就需要考虑同步。GPU中的同步有如下几种:

Barrier(屏障)

顾名思义,就是所有线程运行到这个点都需要停下来。

如图示,红色、蓝色、绿色代表的线程先后到达barrier这个时间点后都停下来进行同步操作,完成之后线程的执行顺序是不一定的,可能如图示蓝色线程先执行,绿色,红色紧随其后。

另外其实还有一种隐式的barrier,比如说先后启动kernel A和kernel B,一般来说kernel B执行之前kernel A肯定是执行完毕了的。

说了这么多来做下题吧~233

题目:如下图示,现在需要实现一个数组前移的操作,即后面一个往前面挪,共享数组大小是128,问为实现这个功能,需要设置几次同步操作(或者说需要设置几个barrier?)

解析:

最开始的时候没想明白,写了127,128,但是都不对。后来听解释才明白。前移操作可以分为三步:

  1. 为每个数组元素赋值,即
array[idx] = threadIdx.x;
__syncthreads(); # 128个线程都执行完赋值语句后才能进行下一步
  1. 读取后面一个元素的值,存在临时变量里
int temp = array[idx+1]; 
__syncthreads(); 
  1. 将后一元素的值往前移
array[idx] = temp; 
__syncthreads(); 

6.Atomic Memory Operation

在cuda编程中经常会碰到这样的情况,即大量的线程同时都需要对某一个内存地址进行读写操作,很自然这会发生冲突,如下图示:

下面是发生冲突的具体的代码示例:

#include "cuda_runtime.h" 
#include "device_launch_parameters.h" 
#define NUM_THREADS 10000
#define ARRAY_SIZE 10
#define BLOCK_WIDTH 100 void printDevice();  __global__ void increment_naive(int *g) { 
int i = blockIdx.x * blockDim.x + threadIdx.x;
i = i % ARRAY_SIZE;
g[i] = g[i] + 1; 
}  int main(int argc, char **argv){ 
printDevice(); 
printf("\n"); 
int h_array[ARRAY_SIZE]; 
const int ARRAY_BYTES = ARRAY_SIZE * sizeof(int);
int *d_array;  // 分配内存 
cudaMalloc((void **) &d_array, ARRAY_BYTES); 
cudaMemset((void *) d_array, 0, ARRAY_BYTES); 
increment_naive<<<NUM_THREADS/BLOCK_WIDTH, BLOCK_WIDTH>>>(d_array); 
cudaMemcpy(h_array, d_array, ARRAY_BYTES, cudaMemcpyDeviceToHost);
for(int i=0; i<ARRAY_SIZE; i++){ 
printf("%d:%d\n",i,h_array[i]); 
}  // 释放内存 
cudaFree(d_array); 
getchar();  //CUDA_SAFE_CALL(cudaGetDeviceCount(&deviceCount)); 
return 0;  } 

运行结果:(每次运行的结果是不确定的)

这里就需要引入原子操作,只需要将读写函数进行如下修改

__global__ void increment_atomicNaive(int *g) { 

       int i = blockIdx.x * blockDim.x + threadIdx.x; 
i = i % ARRAY_SIZE; 
atomicAdd(&g[i], 1);

运行结果:

使用原子操作也是有一定限制的,如下:

  • 只能使用一些特定的运算(如加、减、最小值、异或等运算,但是取模,求幂等运算则不行)和数据类型(一般是整型int)
  • 每个线程块里的不同线程以及线程块本身将以不定的顺序运行,我们在内存上用原子进行的运算顺序也是不定的。

    例如下面的计算表达式的记过会不一样:

    \((a+b+c)\) 和 \(a+(b+c)\),其中\(a=1,b=10^{99},c=-10^{99})\)
  • 虽然顺序不确定,但是要知道的是GPU还是会强制每个线程轮流访问内存,这把不同线程对内存的访问串行化

提高CUDA编程效率策略

  • 高运算密度(high arithmetic intensity)

    \(\frac{math}{memory}\)

前面提到了很多优化策略是集中在memory上的,把数据尽可能放到更快地内存上去,其中内存速度是

local > share > global

  • 避免线程发散(avoid thread divergence)

如图是线程发散的主要场景,即if else语句,上图右边非常生动的展现了线程发散的情形,可以看到各个线程在碰到if条件句后开始发散,最后聚合,但是最后各个线程之间的编号还是保持原来的不变的,这就是线程发散

下面举一个更加极端的例子,就是循环语句,如下图示:

可以看到有蓝、红、绿、紫四个线程同时运行,蓝线程只循环了一次,其他线程循环次数都多于蓝线程,当蓝线程退出循环后就不得不一直等着其他线程,上图左下角的示意图可以很直观的看到这大大降低了运行效率,这也是为什么我们需要避免线程发散

Summary

MARSGGBO♥原创







2017-11-1

Udacity并行计算课程笔记-The GPU Hardware and Parallel Communication Patterns的更多相关文章

  1. 【Udacity并行计算课程笔记】- Lesson 2 The GPU Hardware and Parallel Communication Patterns

    本小节笔记大纲: 1.Communication patterns gather,scatter,stencil,transpose 2.GPU hardware & Programming ...

  2. Udacity并行计算课程笔记-The GPU Programming Model

    一.传统的提高计算速度的方法 faster clocks (设置更快的时钟) more work over per clock cycle(每个时钟周期做更多的工作) more processors( ...

  3. 【Udacity并行计算课程笔记】- Lesson 4 Fundamental GPU Algorithms (Applications of Sort and Scan)

    I. Scan应用--Compact 在介绍这节之前,首先给定一个情景方便理解,就是因为某种原因我们需要从扑克牌中选出方块的牌. 更formal一点的说法如下,输入是 \(s_0,s_1,...\), ...

  4. 【Udacity并行计算课程笔记】- Lesson 3 Fundamental GPU Algorithms (Reduce, Scan, Histogram)

    本周主要内容如下: 如何分析GPU算法的速度和效率 ​​3个新的基本算法:归约.扫描和直方图(Reduce.Scan.Histogram) 一.评估标准 首先介绍用于评估GPU计算的两个标准: ste ...

  5. 【Udacity并行计算课程笔记】- lesson 1 The GPU Programming Model

    一.传统的提高计算速度的方法 faster clocks (设置更快的时钟) more work over per clock cycle(每个时钟周期做更多的工作) more processors( ...

  6. Udacity并行计算课程 CS344 编程作业答案

    Problem set 1 // Homework 1 // Color to Greyscale Conversion //A common way to represent color image ...

  7. Udacity调试课笔记之断言异常

    Udacity调试课笔记之断言异常 这一单元的内容不是很多,如Zeller教授所说,就是如何写.检查断言,并如何使用工具实现自动推导出断言的条件. 现在,多数的编程语言,尤其是高级编程语言都会有内置的 ...

  8. CS231n课程笔记翻译9:卷积神经网络笔记

    译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客和猴子翻译完成,堃堃和李艺颖进行校对修改. 原文如下 内容列 ...

  9. (Stanford CS224d) Deep Learning and NLP课程笔记(一):Deep NLP

    Stanford大学在2015年开设了一门Deep Learning for Natural Language Processing的课程,广受好评.并在2016年春季再次开课.我将开始这门课程的学习 ...

随机推荐

  1. [最短路][部分转]P1027 Car的旅行路线

    题目描述 又到暑假了,住在城市A的Car想和朋友一起去城市B旅游.她知道每个城市都有四个飞机场,分别位于一个矩形的四个顶点上,同一个城市中两个机场之间有一条笔直的高速铁路,第I个城市中高速铁路了的单位 ...

  2. 轻松学习 JavaScript——第 6 部分:JavaScript 箭头函数

    JavaScript箭头函数是ECMAScript 6中引入的编写函数表达式的一种简便方法.通常,在JavaScript中,可以通过两种方式创建函数: 函数语句. 函数表达式. 可以如下所示创建函数语 ...

  3. 从MVC到Ajax再到前后端分离的思考

    前言 一位小妹去面试前端,前端leader问了"什么是ajax?",答:"接收后台的数据,然后然后自己填充和渲染样式":一位小哥去面试后台,技术经理问了&quo ...

  4. Android APK反编译 apktool使用教程

    2017年棋牌游戏突然就火了,正所谓春江水暖鸭先知本猿处在软件行业中就能清晰的感受到市场的变化,最近老家那边也是玩的风生水起,于是最近闲暇时光想到反编译下这些棋牌软件,看看代码实现的思路 (注:反编译 ...

  5. RibbonForm使用技巧

    Ribbon右侧显示Logo 方法 重写RibbonControl的Paint事件 效果 代码 private void _ribbonControl_Paint(object sender, Pai ...

  6. Java第三季

    1.异常简介: (1) Java中的所有不正常类都继承于Throwable类.Throwable主要包括两个大类,一个是Error类,另一个是 Exception类: (2)其中Error类中包括虚拟 ...

  7. javascript权威指南pdf

    链接:https://pan.baidu.com/s/1c19qfSk 密码:j4f3

  8. python并发编程之多线程二

    一,开启线程的两种方式 方法一: from threading import Thread import random,time def eat(name): print('%s is eating. ...

  9. 【读书笔记】《Effective Java》——创建和销毁对象

    Item 1. 考虑用静态工厂方法替代构造器 获得一个类的实例时我们都会采取一个共有的构造器.Foo x = new Foo(): 同时我们应该掌握另一种方法就是静态工厂方法(static facto ...

  10. 【原创】2、小程序域名配置之申请支持SSL(https)

    要把一个网站对接进小程序,一.网站的域名必须通过备案(ICP备案).在买域名的时候,各个域名服务商都有提供相应的备案平台,可以方便的提交备案.工信部官网:http://www.miitbeian.go ...