Java 加解密技术系列之 DH

  • 概念
  • 原理
  • 代码实现
  • 结果
  • 结束语

上一篇文章中简单的介绍了一种非对称加密算法 — — RSA,今天这篇文章,继续介绍另一种非对称加密算法 — — DH。当然,可能有很多人对这种加密算法并不是很熟悉,不过没关系,希望今天这篇文章能帮助你熟悉他。

原理

  • 整个通信过程中g、g^a、g^b是公开的,但由于g、a、b都是整数,通过g和g^a得到a还是比较容易的,b也是如此,所以最终的“密钥”g^(a*b)还是可以被计算出来的。所以实际的过程还需要在基本原理上加入新的计算——模运算。

    A生成一个随机数a,a是保密的,如a=6 ;

  • A计算g^a%p发送给B,g^a%p=5^6%23=8 ;
  • B生成一个随机数b,b是保密的,如b=15 ;
  • B计算g^b%p发送给A,g^b%p=5^15%23=19 ;
  • A接收到g^b%p后,再使用保密的a,计算(g^b%p)^a%p=19^6%23=2 ;
  • B接收到g^a%p后,再使用保密的b,计算(g^a%p)^b%p=8^15%23=2 ;
  • 这样通信方A和B得到一个相同的密钥:2。
(g^b%p)^a%p=(g^a%p)^b%p 证明:
如果a=2:

    (g^b%p)^a%p=(g^b%p)^2%p=(g^b-n*p)^2%p=(g^(2*b)-2*g^b*n*p+(n*p)^2)%p=g^(2*b)%p ;
    可以看出(g^b-n*p)^2展开后除g^(2*b)外,其它都是p的倍数,所以整个算式的结果是g^(2*b)%p ;

  • 同理对(g^b-n*p)^a展开后除g^(a*b)外,其它都是p的倍数,所以整个算式的结果是g^(a*b)%p ;
  • 同样可以得出(g^a%p)^b%p=g^(a*b)%p ;
  • 所以(g^b%p)^a%p=(g^a%p)^b%p 。
整个通信过程中g、p、g^a%p、g^b%p是公开的,这时通过g、p、g^a%p得到a比较难,同样通过g、p、g^b%p得到b比较难,所以最终的密钥是比较安全的。
以g=5、p=23、g^a%p=8计算a为例,a=log(5, (8+23*n)),这个只能将n的可能值逐个带入公式试验才能得到a的值。如果a、p是比较大的数那么计算更加困难。
需要注意的是,为了防止应用优化算法计算上述问题,质数p不是随便选择的,需要符合一定的条件。随机数a、b的生成算法也必需注意,应使结果尽可能随机,不能出现可预测的规律,否则会使破解变的容易。

代码实现

import com.google.common.collect.Maps;
import sun.misc.BASE64Decoder;
import sun.misc.BASE64Encoder; import javax.crypto.*;
import javax.crypto.interfaces.DHPrivateKey;
import javax.crypto.interfaces.DHPublicKey;
import javax.crypto.spec.DHParameterSpec;
import java.security.*;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.util.Map; /**
* Created by xiang.li on 2015/3/4.
* DH 加解密工具类
*/
public class DH {
/**
* 定义加密方式
*/
private static final String KEY_DH = "DH";
/**
* 默认密钥字节数
*/
private static final int KEY_SIZE = 1024;
/**
* DH加密下需要一种对称加密算法对数据加密,这里我们使用DES,也可以使用其他对称加密算法
*/
private static final String KEY_DH_DES = "DES";
private static final String KEY_DH_PUBLICKEY = "DHPublicKey";
private static final String KEY_DH_PRIVATEKEY = "DHPrivateKey"; /**
* 初始化甲方密钥
* @return
*/
public static Map<String, Object> init() {
Map<String, Object> map = null;
try {
KeyPairGenerator generator = KeyPairGenerator.getInstance(KEY_DH);
generator.initialize(KEY_SIZE);
KeyPair keyPair = generator.generateKeyPair();
// 甲方公钥
DHPublicKey publicKey = (DHPublicKey) keyPair.getPublic();
// 甲方私钥
DHPrivateKey privateKey = (DHPrivateKey) keyPair.getPrivate();
map = Maps.newHashMap();
map.put(KEY_DH_PUBLICKEY, publicKey);
map.put(KEY_DH_PRIVATEKEY, privateKey);
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
}
return map;
} /**
* 初始化乙方密钥
* @param key 甲方密钥
* @return
*/
public static Map<String, Object> init(String key) {
Map<String, Object> map = null;
try {
// 解析甲方密钥
byte[] bytes = decryptBase64(key);
X509EncodedKeySpec keySpec = new X509EncodedKeySpec(bytes);
KeyFactory factory = KeyFactory.getInstance(KEY_DH);
PublicKey publicKey = factory.generatePublic(keySpec); // 由甲方公钥构建乙方密钥
DHParameterSpec spec = ((DHPublicKey) publicKey).getParams();
KeyPairGenerator generator = KeyPairGenerator.getInstance(KEY_DH);
generator.initialize(spec);
KeyPair keyPair = generator.generateKeyPair();
// 乙方公钥
DHPublicKey dhPublicKey = (DHPublicKey) keyPair.getPublic();
// 乙方私钥
DHPrivateKey dhPrivateKey = (DHPrivateKey) keyPair.getPrivate();
map = Maps.newHashMap();
map.put(KEY_DH_PUBLICKEY, dhPublicKey);
map.put(KEY_DH_PRIVATEKEY, dhPrivateKey);
} catch (Exception e) {
e.printStackTrace();
}
return map;
} /**
* DH 加密
* @param data 带加密数据
* @param publicKey 甲方公钥
* @param privateKey 乙方私钥
* @return
*/
public static byte[] encryptDH(byte[] data, String publicKey, String privateKey) {
byte[] bytes = null;
try {
// 生成本地密钥
SecretKey secretKey = getSecretKey(publicKey, privateKey);
// 数据加密
Cipher cipher = Cipher.getInstance(secretKey.getAlgorithm());
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
bytes = cipher.doFinal(data);
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
} catch (NoSuchPaddingException e) {
e.printStackTrace();
} catch (InvalidKeyException e) {
e.printStackTrace();
} catch (BadPaddingException e) {
e.printStackTrace();
} catch (IllegalBlockSizeException e) {
e.printStackTrace();
}
return bytes;
} /**
* DH 解密
* @param data 待解密数据
* @param publicKey 乙方公钥
* @param privateKey 甲方私钥
* @return
*/
public static byte[] decryptDH(byte[] data, String publicKey, String privateKey) {
byte[] bytes = null;
try {
// 生成本地密钥
SecretKey secretKey = getSecretKey(publicKey, privateKey);
// 数据解密
Cipher cipher = Cipher.getInstance(secretKey.getAlgorithm());
cipher.init(Cipher.DECRYPT_MODE, secretKey);
bytes = cipher.doFinal(data);
} catch (NoSuchAlgorithmException e) {
e.printStackTrace();
} catch (NoSuchPaddingException e) {
e.printStackTrace();
} catch (InvalidKeyException e) {
e.printStackTrace();
} catch (BadPaddingException e) {
e.printStackTrace();
} catch (IllegalBlockSizeException e) {
e.printStackTrace();
}
return bytes;
} /**
* 取得私钥
* @param map
* @return
*/
public static String getPrivateKey(Map<String, Object> map) {
String str = "";
try {
Key key = (Key) map.get(KEY_DH_PRIVATEKEY);
str = encryptBase64(key.getEncoded());
} catch (Exception e) {
e.printStackTrace();
}
return str;
} /**
* 取得公钥
* @param map
* @return
*/
public static String getPublicKey(Map<String, Object> map) {
String str = "";
try {
Key key = (Key) map.get(KEY_DH_PUBLICKEY);
str = encryptBase64(key.getEncoded());
} catch (Exception e) {
e.printStackTrace();
}
return str;
} /**
* 构建本地密钥
* @param publicKey 公钥
* @param privateKey 私钥
* @return
*/
private static SecretKey getSecretKey(String publicKey, String privateKey) {
SecretKey secretKey = null;
try {
// 初始化公钥
byte[] publicBytes = decryptBase64(publicKey);
KeyFactory factory = KeyFactory.getInstance(KEY_DH);
X509EncodedKeySpec keySpec = new X509EncodedKeySpec(publicBytes);
PublicKey localPublicKey = factory.generatePublic(keySpec); // 初始化私钥
byte[] privateBytes = decryptBase64(privateKey);
PKCS8EncodedKeySpec spec = new PKCS8EncodedKeySpec(privateBytes);
PrivateKey localPrivateKey = factory.generatePrivate(spec); KeyAgreement agreement = KeyAgreement.getInstance(factory.getAlgorithm());
agreement.init(localPrivateKey);
agreement.doPhase(localPublicKey, true); // 生成本地密钥
secretKey = agreement.generateSecret(KEY_DH_DES);
} catch (Exception e) {
e.printStackTrace();
}
return secretKey;
} /**
* BASE64 解密
* @param key 需要解密的字符串
* @return 字节数组
* @throws Exception
*/
public static byte[] decryptBase64(String key) throws Exception {
return (new BASE64Decoder()).decodeBuffer(key);
} /**
* BASE64 加密
* @param key 需要加密的字节数组
* @return 字符串
* @throws Exception
*/
public static String encryptBase64(byte[] key) throws Exception {
return (new BASE64Encoder()).encodeBuffer(key);
} /**
* 测试方法
* @param args
*/
public static void main(String[] args) {
// 生成甲方密钥对
Map<String, Object> mapA = init();
String publicKeyA = getPublicKey(mapA);
String privateKeyA = getPrivateKey(mapA);
System.out.println("甲方公钥:\n" + publicKeyA);
System.out.println("甲方私钥:\n" + privateKeyA); // 由甲方公钥产生本地密钥对
Map<String, Object> mapB = init(publicKeyA);
String publicKeyB = getPublicKey(mapB);
String privateKeyB = getPrivateKey(mapB);
System.out.println("乙方公钥:\n" + publicKeyB);
System.out.println("乙方私钥:\n" + privateKeyB); String word = "abc";
System.out.println("原文: " + word); // 由甲方公钥,乙方私钥构建密文
byte[] encWord = encryptDH(word.getBytes(), publicKeyA, privateKeyB); // 由乙方公钥,甲方私钥解密
byte[] decWord = decryptDH(encWord, publicKeyB, privateKeyA);
System.out.println("解密: " + new String(decWord)); }
}

结果

结束语

这个机制的巧妙在于需要安全通信的双方可以用这个方法确定对称密钥。然后可以用这个密钥进行加密和解密。但是注意,这个密钥交换协议/算法只能用于密钥的交换,而不能进行消息的加密和解密。双方确定要用的密钥后,要使用其他对称密钥操作加密算法实际加密和解密消息。

10.Java 加解密技术系列之 DH的更多相关文章

  1. Java 加解密技术系列文章

    Java 加解密技术系列之 总结 Java 加解密技术系列之 DH Java 加解密技术系列之 RSA Java 加解密技术系列之 PBE Java 加解密技术系列之 AES Java 加解密技术系列 ...

  2. 11.Java 加解密技术系列之 总结

    Java 加解密技术系列之 总结 序 背景 分类 常用算法 原理 关于代码 结束语 序 上一篇文章中简单的介绍了第二种非对称加密算法 — — DH,这种算法也经常被叫做密钥交换协议,它主要是针对密钥的 ...

  3. 9.Java 加解密技术系列之 RSA

    Java 加解密技术系列之 RSA 序 概念 工作流程 RSA 代码实现 加解密结果 结束语 序 距 离上一次写博客感觉已经很长时间了,先吐槽一下,这个月以来,公司一直在加班,又是发版.上线,又是新项 ...

  4. 5.Java 加解密技术系列之 DES

    Java 加解密技术系列之 DES 序 背景 概念 基本原理 主要流程 分组模式 代码实现 结束语 序 前 几篇文章讲的都是单向加密算法,其中涉及到了 BASE64.MD5.SHA.HMAC 等几个比 ...

  5. 2.Java 加解密技术系列之 MD5

    Java 加解密技术系列之 MD5 序 背景 正文 结束语 序 上一篇文章中,介绍了最基础的编码方式 — — BASE64,也简单的提了一下编码的原理.这篇文章继续加解密的系列,当然也是介绍比较基础的 ...

  6. 8.Java 加解密技术系列之 PBE

    Java 加解密技术系列之 PBE 序 概念 原理 代码实现 结束语 序 前 边的几篇文章,已经讲了几个对称加密的算法了,今天这篇文章再介绍最后一种对称加密算法 — — PBE,这种加密算法,对我的认 ...

  7. 7.java 加解密技术系列之 AES

    java 加解密技术系列之 AES 序 概念 原理 应用 代码实现 结束语 序 这篇文章继续介绍对称加密算法,至于今天的主角,不用说,也是个厉害的角色 — — AES.AES 的出现,就是为了来替代原 ...

  8. 6. Java 加解密技术系列之 3DES

    Java 加解密技术系列之 3DES 序 背景 概念 原理 代码实现 结束语 序 上一篇文章讲的是对称加密算法 — — DES,这篇文章打算在 DES 的基础上,继续多讲一点,也就是 3 重 DES ...

  9. 4.Java 加解密技术系列之 HMAC

    Java 加解密技术系列之 HMAC 序 背景 正文 代码 结束语 序 上一篇文章中简单的介绍了第二种单向加密算法 — —SHA,同时也给出了 SHA-1 的 Java 代码.有这方面需求的童鞋可以去 ...

随机推荐

  1. 4.熟悉Java基本类库系列——Java 正则表达式类库

    正则表达式语法结构图: Java正则表达式类库结构图: Java典型例子 1.String类 matches()方法 判断字符串是否符合特定正则表达式 @Test public void testRe ...

  2. emmet(快速开发)的使用

    emmet可以帮助您快速编写HTML和CSS代码,从而加速Web前端开发. 比如<html>.<head>.<body>等,现在你只需要1秒钟就可以输入这些标签. ...

  3. 项目在App Store的展示信息

    一.首部1.图标作用:一个软件的logo.修改:每次提交新版本时可以修改.要求:1>1024*1024像素 2>72dpi.RGB.平展.不透明.没有圆角 3>高品质的JPEG或PN ...

  4. Angularjs 动态添加指令并绑定事件

    先说使用场景,动态生成DOM元素并绑定事件,非常常见的一种场景,用jq实现效果: http://jsbin.com/gajizuyuju/edit?html,js,output var count=0 ...

  5. 解决eclipse中文字很小

    新下载的eclipse4.2.1版本,显示中文字体很小,但是英文比较正常.网上查看要更改字体大小,但是更改后英文也变大了,不是想要的结果. window – preferences – general ...

  6. 查看Samba用户的方法

    有时我们需要查看服务器上都注册了哪些用户,这时我们就可以用下面的命令来查看了. pdbedit可以编辑samba的用户数据库,具体使用方法可以用man查看. pdbedit -L

  7. 机器学习-scikit learn学习笔记

    scikit-learn官网:http://scikit-learn.org/stable/ 通常情况下,一个学习问题会包含一组学习样本数据,计算机通过对样本数据的学习,尝试对未知数据进行预测. 学习 ...

  8. C#中的泛型和泛型集合

    泛型 泛型引入了一个概念:类型参数.通过使用类型参数(T)减少了运行时强制转换或装箱操作的风险,通过泛型可以最大限度的重用代码,保护类型的安全及提高性能,他的最常见应用就是创建集合类,可以约束集合类中 ...

  9. 微信小程序,前端大梦想(二)

    微信小程序的视图与渲染  今天我们从四个方面来了解小程序:   •组件的基本使用  •数据绑定  •渲染标签  •模板的使用     一.组件的基本使用:  微信小程序为我们的开发提供了丰富的UI组件 ...

  10. 源码阅读之mongoengine(0)

    最近工作上用到了mongodb,之前只是草草了解了一下.对于NoSQL的了解也不是太多.所以想趁机多学习一下. 工作的项目直接用了pymongo来操作直接操作mongodb.对于用惯了Djongo O ...