Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:

Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.

Example 2:

Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

Note:

  1. 1 <= length of the array <= 20.
  2. Any scores in the given array are non-negative integers and will not exceed 10,000,000.
  3. If the scores of both players are equal, then player 1 is still the winner.

思路:

参考自

http://www.voidcn.com/blog/starstar1992/article/p-6497962.html

https://discuss.leetcode.com/topic/76472/clean-3ms-c-dp-solution-with-detailed-explanation

https://discuss.leetcode.com/topic/76327/c-dp-solution-with-explanation

bool PredictTheWinner(vector<int>& nums)
{
int n = nums.size();
vector<vector<int>>dp(n, vector<int>(n));
vector<int>sum(n);
sum[] = nums[];
dp[][] = nums[];
for (int i = ; i < n;i++)
{
sum[i] += sum[i - ] + nums[i];
dp[i][i] = nums[i];
}
for (int i = ; i < n;i++)
{
for (int j = ; i + j < n;j++)
{
dp[j][i + j] = max(sum[i+j]-sum[j]+nums[j] -dp[j+][i+j],sum[i+j]-sum[j]+nums[j]-dp[j][i+j-]);
}
}
return * dp[][n - ] >= sum[n - ];
}

如上图所示,dp为二维数组,最终要求得是dp[0][n-1]那么,需要不断的去迭代更新dp[i][j]的值。求得过程类似上图,从对角线的上方

从左上到右下求dp[i][j]的值。也就是说求dp[i][j]需要用到它左边和下边的值 即左边dp[i][j-1]和下边dp[i+1][j]的值。

这一题用动态规划来解决。 
对于原数组A[0,….,n-1],我们定义 
dp[i][j]表示原数组中从i到j的这么多数中,按照游戏规则,某个玩家所能获得的最大分数。 
假设这个分数此时属于palyer1,那么dp[i+1][j]或者dp[i][j-1]表示player2玩家所能获得的最大分数。因为对于player1来讲,他第一次选择要么是第i个数,要么是第j个数,所以对于player2来讲,就分两种情况取最大。

另外我们设从i到j的所有数的和是sum[i,j],则可以得到递推公式:(动态规划最明显的标识) 
dp[i][j]=max(sum[i+1][j]-dp[i+1][j]+nums[i], sum[i][j-1]-dp[i][j-1]+nums[j]) 。

这个需要好好想想!其实不难! 
化简一下: 
dp[i][j]=max(sum[i][j]-dp[i+1][j], sum[i][j]-dp[i][j-1]) 。

但是写代码实现时,我们要注意: 
首先要得到dp[i][i]的值,之后依次得到: 
dp[0][1],dp[1,2],dp[2,3]…dp[n-2][n-1] 
之后再得到dp[0][2],dp[1][3],…

for(int i=1;i<n;i++)
for(int j=0;i+j<n;j++)
dp[j][i+j]=max(sum[i+j]-sum[j]+nums[j]-dp[j+1][i+j],sum[i+j]-sum[j]+nums[j]-dp[j][i+j-1]);

所以这段代码的实现意图就比较明显了! 
另外,注意sum[i+j]-sum[j]+nums[j]而不用sum[i+j]-sum[j-1]来求解从i到j的和,是为了考虑j=0时的情况。

细节处比较多,很考察能力!

leetcode-486-Predict the Winner的更多相关文章

  1. LN : leetcode 486 Predict the Winner

    lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...

  2. [LeetCode] 486. Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  3. 随手练——博弈论入门 leetcode - 486. Predict the Winner

    题目链接:https://leetcode.com/problems/predict-the-winner/ 1.暴力递归 当前数组左边界:i,右边界:j: 对于先发者来说,他能取到的最大值是:max ...

  4. [leetcode] 486. Predict the Winner (medium)

    原题 思路: 解法一: 转换比较拿取分数多少的思路,改为考虑 player拿的分数为正,把Player2拿的视为负,加上所有分数,如果最后结果大于0则Player1赢. 思考得出递归表达式: max( ...

  5. 【LeetCode】486. Predict the Winner 解题报告(Python)

    [LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...

  6. LC 486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  7. 【leetcode】486. Predict the Winner

    题目如下: Given an array of scores that are non-negative integers. Player 1 picks one of the numbers fro ...

  8. 486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  9. 486 Predict the Winner 预测赢家

    给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,…….每次一个玩家只能拿取一个分数,分数被拿取之后不再可取.直到没有剩余分数 ...

  10. Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)

    Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...

随机推荐

  1. vs项目和msql不兼容解决方案

    当vs的工程项目加载了libmysql.lib 即:附加包含目录,附加库目录,附加依赖项都设置好之后,如过编译出现如下: error LNK2019: 无法解析的外部符号 _mysql_real_co ...

  2. MFC基础程序设计VS2015 最新03

    视频教程地址观看:http://pan.baidu.com/s/1mhKQ6kK 一.数字(浮点数或整数)转为文字:a)如果转为窄字符字符串,sprintf函数很好用,浮点数都没问题:b)如果转为宽字 ...

  3. Java学习笔记——设计模式之一.简单工厂

    蜀道之难.难于上青天,侧身西望长咨嗟 --蜀道难 设计模式第一篇,简单工厂. 定义Operation类 package cn.no1.simplefactory; public abstract cl ...

  4. 配置网络yum源

    有的时候服务器需要下载一些软件,是本地yum源没有的,这时候需要配置网络yum源 #cd  /etc/yum.repos.d/ 把这个目录下的配置文件备份,改名:或者是把文件里边的enabled=1的 ...

  5. Linux学习第三步(Centos7安装mysql5.7数据库)

    版本:mysql-5.7.16-1.el7.x86_64.rpm-bundle.tar 前言:在linux下安装mysql不如windows下面那么简单,但是也不是很难.本文向大家讲解了如何在Cent ...

  6. Java 多线程详解(二)------如何创建进程和线程

    Java 多线程详解(一)------概念的引入:http://www.cnblogs.com/ysocean/p/6882988.html 在上一篇博客中,我们已经介绍了并发和并行的区别,以及进程和 ...

  7. aws 装机软件

  8. reshape: from long to wide format(转)

    This is to continue on the topic of using the melt/cast functions in reshape to convert between long ...

  9. 挂载mount

    mount 1 挂载mount 基本概念 挂载:将额外文件系统与根文件系统现存的目录建立起关联关系,进而使得此目录做为其它文件访问入库的行为 卸载:为解除关联关系的过程 注意:挂载点下原有的文件在挂载 ...

  10. kafka 0.10.2 cetos6.5 集群部署

    安装 zookeeper http://www.cnblogs.com/xiaojf/p/6572351.html安装 scala http://www.cnblogs.com/xiaojf/p/65 ...