leetcode-486-Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.
Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.
Example 1:
Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.
Example 2:
Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.
Note:
- 1 <= length of the array <= 20.
- Any scores in the given array are non-negative integers and will not exceed 10,000,000.
- If the scores of both players are equal, then player 1 is still the winner.
思路:
参考自
http://www.voidcn.com/blog/starstar1992/article/p-6497962.html
https://discuss.leetcode.com/topic/76472/clean-3ms-c-dp-solution-with-detailed-explanation
https://discuss.leetcode.com/topic/76327/c-dp-solution-with-explanation
bool PredictTheWinner(vector<int>& nums)
{
int n = nums.size();
vector<vector<int>>dp(n, vector<int>(n));
vector<int>sum(n);
sum[] = nums[];
dp[][] = nums[];
for (int i = ; i < n;i++)
{
sum[i] += sum[i - ] + nums[i];
dp[i][i] = nums[i];
}
for (int i = ; i < n;i++)
{
for (int j = ; i + j < n;j++)
{
dp[j][i + j] = max(sum[i+j]-sum[j]+nums[j] -dp[j+][i+j],sum[i+j]-sum[j]+nums[j]-dp[j][i+j-]);
}
}
return * dp[][n - ] >= sum[n - ];
}
如上图所示,dp为二维数组,最终要求得是dp[0][n-1]那么,需要不断的去迭代更新dp[i][j]的值。求得过程类似上图,从对角线的上方
从左上到右下求dp[i][j]的值。也就是说求dp[i][j]需要用到它左边和下边的值 即左边dp[i][j-1]和下边dp[i+1][j]的值。
这一题用动态规划来解决。
对于原数组A[0,….,n-1],我们定义
dp[i][j]表示原数组中从i到j的这么多数中,按照游戏规则,某个玩家所能获得的最大分数。
假设这个分数此时属于palyer1,那么dp[i+1][j]或者dp[i][j-1]表示player2玩家所能获得的最大分数。因为对于player1来讲,他第一次选择要么是第i个数,要么是第j个数,所以对于player2来讲,就分两种情况取最大。
另外我们设从i到j的所有数的和是sum[i,j],则可以得到递推公式:(动态规划最明显的标识)
dp[i][j]=max(sum[i+1][j]-dp[i+1][j]+nums[i], sum[i][j-1]-dp[i][j-1]+nums[j]) 。
这个需要好好想想!其实不难!
化简一下:
dp[i][j]=max(sum[i][j]-dp[i+1][j], sum[i][j]-dp[i][j-1]) 。
但是写代码实现时,我们要注意:
首先要得到dp[i][i]的值,之后依次得到:
dp[0][1],dp[1,2],dp[2,3]…dp[n-2][n-1]
之后再得到dp[0][2],dp[1][3],…
for(int i=1;i<n;i++)
for(int j=0;i+j<n;j++)
dp[j][i+j]=max(sum[i+j]-sum[j]+nums[j]-dp[j+1][i+j],sum[i+j]-sum[j]+nums[j]-dp[j][i+j-1]);
所以这段代码的实现意图就比较明显了!
另外,注意sum[i+j]-sum[j]+nums[j]而不用sum[i+j]-sum[j-1]来求解从i到j的和,是为了考虑j=0时的情况。
细节处比较多,很考察能力!
leetcode-486-Predict the Winner的更多相关文章
- LN : leetcode 486 Predict the Winner
lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...
- [LeetCode] 486. Predict the Winner 预测赢家
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- 随手练——博弈论入门 leetcode - 486. Predict the Winner
题目链接:https://leetcode.com/problems/predict-the-winner/ 1.暴力递归 当前数组左边界:i,右边界:j: 对于先发者来说,他能取到的最大值是:max ...
- [leetcode] 486. Predict the Winner (medium)
原题 思路: 解法一: 转换比较拿取分数多少的思路,改为考虑 player拿的分数为正,把Player2拿的视为负,加上所有分数,如果最后结果大于0则Player1赢. 思考得出递归表达式: max( ...
- 【LeetCode】486. Predict the Winner 解题报告(Python)
[LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...
- LC 486. Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- 【leetcode】486. Predict the Winner
题目如下: Given an array of scores that are non-negative integers. Player 1 picks one of the numbers fro ...
- 486. Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- 486 Predict the Winner 预测赢家
给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,…….每次一个玩家只能拿取一个分数,分数被拿取之后不再可取.直到没有剩余分数 ...
- Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)
Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...
随机推荐
- Git总结笔记1-搭建和使用30条简明笔记
1.环境搭建: Linux:安装git安装包(yum install -y git) Windows:到官网下载安装包 安装完成后配置如下用户名和邮箱: git config --global use ...
- JAVA中断机制详解
Java提供了中断机制,可以使用它来结束一个线程.这种机制要求线程检查它是否被中断了,然后决定是不是响应这个中断请求.线程允许忽略中断请求并继续执行.Java的中断是一种协作机制.也就是说调用线程对象 ...
- Erlang使用ProtoBuffer
最近有工作需要打算为项目服务器做一个机器人,测试测试压力,根据自己的经验,使用Erlang来做是最合适不过的了,但是服务器使用的C++语言,使用了Google的ProtoBuffer作为协议进行数据交 ...
- 你真的用好了Python的random模块吗?
random模块 用于生成伪随机数 源码位置: Lib/random.py(看看就好,千万别随便修改) 真正意义上的随机数(或者随机事件)在某次产生过程中是按照实验过程中表现的分布概率随机产生的,其结 ...
- 用ajax写分页查询-----2017-05-17
要写分页,首先你得清楚,一页你想显示多少条信息?如何计算总共显示的页数? 先说一下思路: (1)从数据库读取数据,以chenai表为例,读取所有留言信息.并能够实现输入发送者,可以查询该发送者的留言总 ...
- Charles Proxy代理使用简要说明
1.去官网下载免费试用版: http://www.charlesproxy.com/ (需要机器有Java运行时)或下载破解注册版:http://charles.iiilab.com/,安装后开启默认 ...
- 类设计的SOLID原则
SOLID原则是面向对象范式的核心 单一职责原则(Single Responsible Principle, SRP):对于一个类,应该仅有一个引起它变化的原因.其基础是内聚,表示类完成单一功能的程度 ...
- Spring Boot 学习(1)
文 by / 林本托 Tip 做一个终身学习的人. Spring Boot 初体验 Spring Boot 包含了很多 start(Spring boot 中 的叫法,就是一个模块,后文统一称模块,便 ...
- c# .net core 下的网络请求
本文章是在VS2017的环境下,.net core 1.1版本以上. 在这期间,由于.net core 并不基于IIS,我们的过去的网络请求代码在.net core框架下,有可能会出现不兼容,报错的现 ...
- Interactive pivot tables with R(转)
I love interactive pivot tables. That is the number one reason why I keep using spreadsheet software ...