Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:

Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.

Example 2:

Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

Note:

  1. 1 <= length of the array <= 20.
  2. Any scores in the given array are non-negative integers and will not exceed 10,000,000.
  3. If the scores of both players are equal, then player 1 is still the winner.

思路:

参考自

http://www.voidcn.com/blog/starstar1992/article/p-6497962.html

https://discuss.leetcode.com/topic/76472/clean-3ms-c-dp-solution-with-detailed-explanation

https://discuss.leetcode.com/topic/76327/c-dp-solution-with-explanation

bool PredictTheWinner(vector<int>& nums)
{
int n = nums.size();
vector<vector<int>>dp(n, vector<int>(n));
vector<int>sum(n);
sum[] = nums[];
dp[][] = nums[];
for (int i = ; i < n;i++)
{
sum[i] += sum[i - ] + nums[i];
dp[i][i] = nums[i];
}
for (int i = ; i < n;i++)
{
for (int j = ; i + j < n;j++)
{
dp[j][i + j] = max(sum[i+j]-sum[j]+nums[j] -dp[j+][i+j],sum[i+j]-sum[j]+nums[j]-dp[j][i+j-]);
}
}
return * dp[][n - ] >= sum[n - ];
}

如上图所示,dp为二维数组,最终要求得是dp[0][n-1]那么,需要不断的去迭代更新dp[i][j]的值。求得过程类似上图,从对角线的上方

从左上到右下求dp[i][j]的值。也就是说求dp[i][j]需要用到它左边和下边的值 即左边dp[i][j-1]和下边dp[i+1][j]的值。

这一题用动态规划来解决。 
对于原数组A[0,….,n-1],我们定义 
dp[i][j]表示原数组中从i到j的这么多数中,按照游戏规则,某个玩家所能获得的最大分数。 
假设这个分数此时属于palyer1,那么dp[i+1][j]或者dp[i][j-1]表示player2玩家所能获得的最大分数。因为对于player1来讲,他第一次选择要么是第i个数,要么是第j个数,所以对于player2来讲,就分两种情况取最大。

另外我们设从i到j的所有数的和是sum[i,j],则可以得到递推公式:(动态规划最明显的标识) 
dp[i][j]=max(sum[i+1][j]-dp[i+1][j]+nums[i], sum[i][j-1]-dp[i][j-1]+nums[j]) 。

这个需要好好想想!其实不难! 
化简一下: 
dp[i][j]=max(sum[i][j]-dp[i+1][j], sum[i][j]-dp[i][j-1]) 。

但是写代码实现时,我们要注意: 
首先要得到dp[i][i]的值,之后依次得到: 
dp[0][1],dp[1,2],dp[2,3]…dp[n-2][n-1] 
之后再得到dp[0][2],dp[1][3],…

for(int i=1;i<n;i++)
for(int j=0;i+j<n;j++)
dp[j][i+j]=max(sum[i+j]-sum[j]+nums[j]-dp[j+1][i+j],sum[i+j]-sum[j]+nums[j]-dp[j][i+j-1]);

所以这段代码的实现意图就比较明显了! 
另外,注意sum[i+j]-sum[j]+nums[j]而不用sum[i+j]-sum[j-1]来求解从i到j的和,是为了考虑j=0时的情况。

细节处比较多,很考察能力!

leetcode-486-Predict the Winner的更多相关文章

  1. LN : leetcode 486 Predict the Winner

    lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...

  2. [LeetCode] 486. Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  3. 随手练——博弈论入门 leetcode - 486. Predict the Winner

    题目链接:https://leetcode.com/problems/predict-the-winner/ 1.暴力递归 当前数组左边界:i,右边界:j: 对于先发者来说,他能取到的最大值是:max ...

  4. [leetcode] 486. Predict the Winner (medium)

    原题 思路: 解法一: 转换比较拿取分数多少的思路,改为考虑 player拿的分数为正,把Player2拿的视为负,加上所有分数,如果最后结果大于0则Player1赢. 思考得出递归表达式: max( ...

  5. 【LeetCode】486. Predict the Winner 解题报告(Python)

    [LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...

  6. LC 486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  7. 【leetcode】486. Predict the Winner

    题目如下: Given an array of scores that are non-negative integers. Player 1 picks one of the numbers fro ...

  8. 486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  9. 486 Predict the Winner 预测赢家

    给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,…….每次一个玩家只能拿取一个分数,分数被拿取之后不再可取.直到没有剩余分数 ...

  10. Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)

    Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...

随机推荐

  1. CATransition 转场动画解析

    http://blog.csdn.net/mad2man/article/details/17260901

  2. React入门---开始前的准备(下)-3

    React开始前的准备(下): ·配置webpack热加载(热加载就是修改js文件,点击保存之后,浏览器会自动刷新,提高开发效率) 1. 全局安装: npm install webpack -g np ...

  3. trap-接收信号_采取行动

    trap命令用于指定在接收到信号后将要采取的动作,常见的用途是在脚本程序被中断时完成清理工作. kill和trap等都可以看到信号编号及其关联的名称. "信号"是指那些被异步发送到 ...

  4. Fiddler插件 --- 解密Elong Mapi请求参数及响应内容

    当前问题: 在我们日常的Web/App测试过程中, Fiddler是一大辅助利器:在我们团队,也经常使用Fiddler进行App抓包测试. 艺龙 App使用的REST(内部称为Mapi)接口,在使用过 ...

  5. Configure Red Hat Enterprise Linux shared disk cluster for SQL Server——RHEL上的“类”SQL Server Cluster功能

    下面一步一步介绍一下如何在Red Hat Enterprise Linux系统上为SQL Server配置共享磁盘集群(Shared Disk Cluster)及其相关使用(仅供测试学习之用,基础篇) ...

  6. eval全局作用域和局部作用域的坑!

    1.eval 是个函数,他可以被赋值给变量,例如   var evalg = eval;  evalg("alert(1)"); 2.eval被赋值时,也会把当前eval所处的变量 ...

  7. 关于c#邮件发送的简单例子

    这里所说的发送邮件,以发送qq邮件为例. 首先我们先要在自己的邮箱配置好如下选项:

  8. iOS面试题及答案

    设计模式是什么? 你知道哪些设计模式,并简要叙述? 设计模式是一种编码经验,就是用比较成熟的逻辑去处理某一种类型的事情. 1). MVC模式:Model View Control,把模型 视图 控制器 ...

  9. 关于微信小程序的的总结

    微信小程序学完了,给大家分享一些自己学小程序的心得,希望能帮到大家. 首先,我谈谈小程序数据绑定的那一块,所有从本地或者远程服务器的API传过来,都必须绑定到data: {}, 绑定格式是一个一个的键 ...

  10. linux压缩及vi操作

    一:Linux的压缩方式 1.tar cvf 对文件进行压缩,tar cvf+压缩文件完成的命名+需要压缩的文件 2,tar -tf +命名的压缩文件:表示查看目录里面的内容 3,tar -xf 解压 ...