Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:

Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.

Example 2:

Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

Note:

  1. 1 <= length of the array <= 20.
  2. Any scores in the given array are non-negative integers and will not exceed 10,000,000.
  3. If the scores of both players are equal, then player 1 is still the winner.

思路:

参考自

http://www.voidcn.com/blog/starstar1992/article/p-6497962.html

https://discuss.leetcode.com/topic/76472/clean-3ms-c-dp-solution-with-detailed-explanation

https://discuss.leetcode.com/topic/76327/c-dp-solution-with-explanation

bool PredictTheWinner(vector<int>& nums)
{
int n = nums.size();
vector<vector<int>>dp(n, vector<int>(n));
vector<int>sum(n);
sum[] = nums[];
dp[][] = nums[];
for (int i = ; i < n;i++)
{
sum[i] += sum[i - ] + nums[i];
dp[i][i] = nums[i];
}
for (int i = ; i < n;i++)
{
for (int j = ; i + j < n;j++)
{
dp[j][i + j] = max(sum[i+j]-sum[j]+nums[j] -dp[j+][i+j],sum[i+j]-sum[j]+nums[j]-dp[j][i+j-]);
}
}
return * dp[][n - ] >= sum[n - ];
}

如上图所示,dp为二维数组,最终要求得是dp[0][n-1]那么,需要不断的去迭代更新dp[i][j]的值。求得过程类似上图,从对角线的上方

从左上到右下求dp[i][j]的值。也就是说求dp[i][j]需要用到它左边和下边的值 即左边dp[i][j-1]和下边dp[i+1][j]的值。

这一题用动态规划来解决。 
对于原数组A[0,….,n-1],我们定义 
dp[i][j]表示原数组中从i到j的这么多数中,按照游戏规则,某个玩家所能获得的最大分数。 
假设这个分数此时属于palyer1,那么dp[i+1][j]或者dp[i][j-1]表示player2玩家所能获得的最大分数。因为对于player1来讲,他第一次选择要么是第i个数,要么是第j个数,所以对于player2来讲,就分两种情况取最大。

另外我们设从i到j的所有数的和是sum[i,j],则可以得到递推公式:(动态规划最明显的标识) 
dp[i][j]=max(sum[i+1][j]-dp[i+1][j]+nums[i], sum[i][j-1]-dp[i][j-1]+nums[j]) 。

这个需要好好想想!其实不难! 
化简一下: 
dp[i][j]=max(sum[i][j]-dp[i+1][j], sum[i][j]-dp[i][j-1]) 。

但是写代码实现时,我们要注意: 
首先要得到dp[i][i]的值,之后依次得到: 
dp[0][1],dp[1,2],dp[2,3]…dp[n-2][n-1] 
之后再得到dp[0][2],dp[1][3],…

for(int i=1;i<n;i++)
for(int j=0;i+j<n;j++)
dp[j][i+j]=max(sum[i+j]-sum[j]+nums[j]-dp[j+1][i+j],sum[i+j]-sum[j]+nums[j]-dp[j][i+j-1]);

所以这段代码的实现意图就比较明显了! 
另外,注意sum[i+j]-sum[j]+nums[j]而不用sum[i+j]-sum[j-1]来求解从i到j的和,是为了考虑j=0时的情况。

细节处比较多,很考察能力!

leetcode-486-Predict the Winner的更多相关文章

  1. LN : leetcode 486 Predict the Winner

    lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...

  2. [LeetCode] 486. Predict the Winner 预测赢家

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  3. 随手练——博弈论入门 leetcode - 486. Predict the Winner

    题目链接:https://leetcode.com/problems/predict-the-winner/ 1.暴力递归 当前数组左边界:i,右边界:j: 对于先发者来说,他能取到的最大值是:max ...

  4. [leetcode] 486. Predict the Winner (medium)

    原题 思路: 解法一: 转换比较拿取分数多少的思路,改为考虑 player拿的分数为正,把Player2拿的视为负,加上所有分数,如果最后结果大于0则Player1赢. 思考得出递归表达式: max( ...

  5. 【LeetCode】486. Predict the Winner 解题报告(Python)

    [LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...

  6. LC 486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  7. 【leetcode】486. Predict the Winner

    题目如下: Given an array of scores that are non-negative integers. Player 1 picks one of the numbers fro ...

  8. 486. Predict the Winner

    Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...

  9. 486 Predict the Winner 预测赢家

    给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,…….每次一个玩家只能拿取一个分数,分数被拿取之后不再可取.直到没有剩余分数 ...

  10. Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)

    Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...

随机推荐

  1. 更快的理解js中循环嵌套

    [循环控制语句] break语句:终止本层循环,继续执行循环后面的语句:(当循环有多层时,break只会跳出一层循环) continue语句:跳过本次循环,继续执行下次循环: (对于for循环,con ...

  2. 转:Java中的Clone()方法详解

    Java中对象的创建 clone顾名思义就是复制, 在Java语言中, clone方法被对象调用,所以会复制对象.所谓的复制对象,首先要分配一个和源对象同样大小的空间,在这个空间中创建一个新的对象.那 ...

  3. JAVA的节点流和处理流

    节点流:可以从或向一个特定的地方(节点)读写数据.如FileReader. 处理流:是对一个已存在的流的连接和封装,通过所封装的流的功能调用实现数据读写.如BufferedReader.处理流的构造方 ...

  4. composer安装及使用说明和相关原理文档

    一.安装composer: 1.官方安装方法见https://getcomposer.org/download/   2.本人安装方法: ①先配好yum源(不会配置的见博客如何制作自己的yum源),我 ...

  5. .Net程序员学用Oracle系列(27):PLSQL 之游标、异常和事务

    1.游标 1.1.游标属性 1.2.隐式游标 1.3.游标处理及案例 2.异常 2.1.异常类别 2.2.异常函数 2.3.异常处理及案例 3.事务 3.1.开始事务.结束事务 3.2.自治事务 3. ...

  6. Python 基本数据类型_常用功能整理

    一.字符串 字符串 s ="axle" #去两端空格 s.split() #以什么开头 s.startswith("a") #查找子序列,"12&qu ...

  7. Ubuntu热键控制spotify播放和音量调节

    安装xbindkeys sudo apt-get install xbindkeys 新建配置文件 xbindkeys -d > ~/.xbindkeysrc 编辑热键 vim ~/.xbind ...

  8. Openstack & Ansible

    Opennstack Open source software for creating private and public clouds Manages the servers at these ...

  9. Hibernate composite key

    有两种方法来map composite key. 第一种用@IdClass第二种用@Embeddable,参考链接: http://stackoverflow.com/questions/358503 ...

  10. 走进javascript——数组的那些事

    Array构造器 如果参数只有一个并且是Number类型,那么就是指定数组的长度,但不能是NaN,如果是多个会被当做参数列表. new Array(12) // (12) [undefined × 1 ...