旋转模式用来解决三角函数,实现极坐标到直角坐标的转换,基础理论请参考Cordic算法——圆周系统之旋转模式。那么,向量模式则用来解决反三角函数的问题,体现的应用主要是直角坐标向极坐标转换,即已知一点的直角坐标(x,y),求其极坐标(α,γ),实际上是求arctan(y/x)。

旋转模式下,每次迭代使z趋近于α(α-z趋近于0),而向量模式下,则使y趋近于0,这一点很好理解,即从坐标位置,旋转到x正半轴,一共旋转了多少角度,则该角度即为α,从而知道了极角。

如图所示,在单位圆上,向量OP与X轴的正半轴夹角为α,故P点的坐标可表示为

根据开头描述,我们需要转动向量OP,先顺时针旋转θ角至向量OQ,Q点的坐标可表示为

这里定义θ为目标旋转角度。根据三角函数公式可将上式展开为

现在已经有点 Cordic 算法的样子了,但是我们看到每次旋转都要计算 4 次浮点数的乘法运算,运算量还是太大了。还需要进一步的改进,改进的切入点当然还是坐标变换的过程。

将式(1.1)代入到式(1.3)中可得

用矩阵形式表示为:

旋转了i次以后,可以得到:

最终需将y_Q_i+1转为0,先按45°的二分法查找来解释过程,用C语言描述过程为:

#include <stdio.h>
#include <stdlib.h> double cordic_v(double x, double y); int main(viod)
{
double alfa = cordic_v(120.0,200.0); //直角坐标(x,y)
printf("\n 极角为 = %f \n",alfa);
return 0;
}
double cordic_v(double x, double y)
{
const double sine[] = {0.7071067811865,0.3826834323651,0.1950903220161,
0.09801714032956,0.04906767432742,0.02454122852291,0.01227153828572,
0.006135884649154,0.003067956762966,0.001533980186285,
7.669903187427045e-4,3.834951875713956e-4,1.917475973107033e-4,
9.587379909597735e-5,4.793689960306688e-5,2.396844980841822e-5
}; const double cosine[] = {0.7071067811865,0.9238795325113,0.9807852804032,0.9951847266722,
0.9987954562052,0.9996988186962,0.9999247018391,0.9999811752826,0.9999952938096,
0.9999988234517,0.9999997058629,0.9999999264657,0.9999999816164,0.9999999954041,
0.999999998851,0.9999999997128
};
int i = 0;
double x_new, y_new;
double angleSum = 0.0;
double angle = 45.0; //第一次旋转角度为45°
for( i=0; i<15;i++)
{
if(y > 0)
{
x_new = x * cosine[i] + y * sine[i];
y_new = y * cosine[i] - x * sine[i];
x = x_new;
y = y_new;
angleSum += angle;
} else
{
x_new = x * cosine[i] - y * sine[i];
y_new = y * cosine[i] + x * sine[i];
x = x_new;
y = y_new;
angleSum -= angle;
}
printf("旋转次数: i = %2d 旋转角度 = %10f, 累计旋转角度 = %10f\n", i+1, angle,angleSum );
angle /= 2;
}
return angleSum;
}

经过旋转模式的推导,向量模式的伪旋转公式,可表示为

C语言描述过程,如下:

#include <stdio.h>
#include <stdlib.h>
#include <math.h> double cordic_v(double x, double y);
double r = 0.0; //定义一个模长全局变量 int main(viod)
{
double alfa = cordic_v(120.0,200.0); //直角坐标(x,y)
printf("\n极角 = %5f, 模长 = %5f\n",alfa,r);
return 0;
}
double cordic_v(double x, double y)
{
const double theta[] = { 45.0, 26.56505118, 14.03624347, 7.125016349,
3.576334375, 1.789910608, 0.8951737102, 0.4476141709,
0.2238105004, 0.1119056771, 0.05595289189, 0.02797645262,
0.01398822714, 0.006994113675, 0.003497056851, 0.001748528427
}; //旋转角度
int i = 0;
double x_new, y_new;
double angleSum = 0.0;
r = sqrt(x*x+y*y);
for( i=0; i<16;i++)
{
if(y > 0)
{
x_new = x + y/(1<<i);
y_new = y - x/(1<<i);
x = x_new;
y = y_new;
angleSum += theta[i];
} else
{
x_new = x - y/(1<<i);
y_new = y + x/(1<<i);
x = x_new;
y = y_new;
angleSum -= theta[i];
}
printf("旋转次数: i = %2d 旋转角度 = %10f, 累计旋转角度 = %10f, y = %5f\n", i+1,theta[i],angleSum,y );
}
return angleSum;
}

同样,向量模式的cordic算法适用于第一、四象限的坐标变换,在第二、三象限的坐标需要进行预处理。

参考

Cordic算法——圆周系统之向量模式的更多相关文章

  1. FPGA算法学习(1) -- Cordic(圆周系统之向量模式)

    旋转模式用来解决三角函数,实现极坐标到直角坐标的转换,基础理论请参考Cordic算法--圆周系统之旋转模式.那么,向量模式则用来解决反三角函数的问题,体现的应用主要是直角坐标向极坐标转换,即已知一点的 ...

  2. Cordic算法——圆周系统之旋转模式

    三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来计算任意角度的三角函数的值.这种表格在人们刚刚产生三角函数的概念的时候就已经有了,它们通常是通过从已知值(比如sin(π/2)= ...

  3. FPGA算法学习(1) -- Cordic(圆周系统之旋转模式)

    三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来计算任意角度的三角函数的值.这种表格在人们刚刚产生三角函数的概念的时候就已经有了,它们通常是通过从已知值(比如sin(π/2)= ...

  4. Cordic算法——verilog实现

    上两篇博文Cordic算法--圆周系统之旋转模式.Cordic算法--圆周系统之向量模式做了理论分析和实现,但是所用到的变量依然是浮点型,而cordic真正的用处是基于FPGA等只能处理定点的平台.只 ...

  5. 使用CORDIC算法求解角度正余弦及Verilog实现

    本文是用于记录在了解和学习CORDIC算法期间的收获,以供日后自己及他人参考:并且附上了使用Verilog实现CORDIC算法求解角度的正弦和余弦的代码.简单的testbench测试代码.以及在Mod ...

  6. cordic算法的verilog实现及modelsim仿真

    1. 算法介绍 CORDIC(Coordinate Rotation Digital Computer)算法即坐标旋转数字计算方法,是J.D.Volder1于1959年首次提出,主要用于三角函数.双曲 ...

  7. CORDIC算法(1):圆周旋转模式下计算三角函数和模值

    CORDIC(Coordinate Rotation Digital Computer)坐标旋转数字计算机,是数学与计算机技术交叉产生的一种机器算法,用于解决计算机的数学计算问题.发展到现在,CORD ...

  8. 基于FPGA的cordic算法的verilog初步实现

    最近在看cordic算法,由于还不会使用matlab,真是痛苦,一系列的笔算才大概明白了这个算法是怎么回事.于是尝试用verilog来实现.用verilog实现之前先参考软件的程序,于是先看了此博文h ...

  9. 基于FPGA的Cordic算法实现

    CORDIC(Coordinate Rotation Digital Computer)算法即坐标旋转数字计算方法,是J.D.Volder1于1959年首次提出,主要用于三角函数.双曲线.指数.对数的 ...

随机推荐

  1. jsp中的盲区-面试可能会问到的东西

    1.今天看到一个有趣的JSP题目. <body>    This is my JSP page. <br>    <%        int a = 10;    %&g ...

  2. 用node.js实现ORM的一种思路

    ORM是O和R的映射.O代表面向对象,R代表关系型数据库.二者有相似之处同时也各有特色.就是因为这种即是又非的情况,才需要做映射的. 理想情况是,根据关系型数据库(含业务需求)的特点来设计数据库.同时 ...

  3. Akka(30): Http:High-Level-Api,Routing DSL

    在上篇我们介绍了Akka-http Low-Level-Api.实际上这个Api提供了Server对进来的Http-requests进行处理及反应的自定义Flow或者转换函数的接入界面.我们看看下面官 ...

  4. LINUX 笔记-DU 和 DF

    du(disk usage)搜索文件统计文件大小 1.显示指定文件所占空间 du file1 file2 2.显示指定目录占的空间 du dir 3.只显示总和大小 du -s 4.以方便格式显示 d ...

  5. Java随机数和UUID

    Java随机数和UUID Java随机数 在Java项目中通常是通过Math.random方法和Random类来获得随机数,前者通过生成一个Random类的实例来实现. 此类产生的是一组伪随机数流,通 ...

  6. 对象转字典 iOS

    最近在开发SDK,我开放给客户model类设置信息后,对象转字典,POST给后台. 思路:通过Runtime访问属性列表,快速转换成字典. FRObjectToDictionary.h类 p.p1 { ...

  7. 3分钟利用TurnipBit制作电子时钟

    转载请注明:@小五义 http://www.cnblogs.com/xiaowuyi 欢迎加入讨论群 64770604 TurnipBit(www.turnipbit.com)是一个面向青少年的开发板 ...

  8. component及刚体rigidbody用法

    关于getcomponent函数,rigidbody(2d)的嵌套关系及用法 1.getcomponent函数 在unity中脚本可以看成是可定义的组件,我们经常要访问同一对象或不同对象中的脚本,可以 ...

  9. JAVA提高九:集合体系

    在经过了前面的JDK6.0新特性的学习后,将进一步深入学习JDK,因为集合的重要性,因此从集合开始入手分析: 一.集合概况 Java是一种面向对象语言,如果我们要针对多个对象进行操作,那么首先必要将多 ...

  10. Appium python自动化测试系列之页面滑动原理讲解(十)

    10.1.1 页面滑动原理分析 在页面滑动查找章节我们就讲了滑动的知识点,只是不知道大家是否有认真练习以及去理解,如果你认真练习.理解了那么我相信这一章节的东西不用看也能够完成,下面我们还是简单分析一 ...