题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1069

Monkey and Banana

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10875    Accepted Submission(s): 5660

Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

 
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
 
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
 
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
题意:

题目:给出一些长方体,然后让你把他堆成塔,
要求下面的塔的要比上面的塔大(长和宽),
而且每一种长方体的数量都是无限的。
每个格子最多3个状态,也就是高最多有3种,也就是一共有N*3 最多90个格子,但是X和Y可以对调,那么就最多180个,我对180个格子对X从小到大排序,X相等,Y就重小到大排序,那么这个问题就可以转换成类似求最大递增子序列问题一样思路的DP,DP[i]表示第i个格子时的最大值,dp[i+1]就是从前i个中找符合条件的最大的一个加上去,因为,重楼必须X越来越小,反过来就是X越来越大,我已经保证了X是递增的,所以这样DP是对的!
 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ; struct Node {
int x;
int y;
int z;
bool operator < (const Node &a) const
{
if(x!=a.x) return x < a.x;
else if(y!=a.y) return y < a.y;
else return z > a.z;
}
} node[N];
int dp[N]; int main()
{
int n;
int cnt = ;
while(~scanf("%d",&n))
{
if(n==) return ;
memset(dp,,sizeof(dp));
int x,y,z;
int t = ;
for(int i = ; i < n; i++){
scanf("%d%d%d",&x,&y,&z);
node[t].x = x;
node[t].y = y;
node[t].z = z;
t++;
node[t].x = x;
node[t].y = z;
node[t].z = y;
t++;
node[t].x = y;
node[t].y = x;
node[t].z = z;
t++;
node[t].x = y;
node[t].y = z;
node[t].z = x;
t++;
node[t].x = z;
node[t].y = x;
node[t].z = y;
t++;
node[t].x = z;
node[t].y = y;
node[t].z = x;
t++;
}
sort(node,node+*n);
int mmax = ;
for(int i = ; i < *n; i++)
dp[i] = node[i].z;
for(int i = ; i < *n; i++)
{
for(int j = ; j < i; j++)
{
if((node[i].x>node[j].x)&&(node[i].y>node[j].y))
dp[i] = max(dp[i],dp[j]+node[i].z);
}
mmax = max(mmax,dp[i]);
}
printf("Case %d: maximum height = ",cnt);
cnt++;
printf("%d\n",mmax);
}
return ;
}

最长上升子序列(LIS经典变型) dp学习~5的更多相关文章

  1. AT2827 最长上升子序列LIS(nlogn的DP优化)

      题意翻译 给定一长度为n的数列,请在不改变原数列顺序的前提下,从中随机的取出一定数量的整数,并使这些整数构成单调上升序列. 输出这类单调上升序列的最大长度. 数据范围:1<=n<=10 ...

  2. 1. 线性DP 300. 最长上升子序列 (LIS)

    最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...

  3. 动态规划(DP),最长递增子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...

  4. 最长上升子序列 LIS(Longest Increasing Subsequence)

    引出: 问题描述:给出一个序列a1,a2,a3,a4,a5,a6,a7….an,求它的一个子序列(设为s1,s2,…sn),使得这个子序列满足这样的性质,s1<s2<s3<…< ...

  5. 最长回文子序列LCS,最长递增子序列LIS及相互联系

    最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...

  6. 最长上升子序列LIS(51nod1134)

    1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递 ...

  7. 【部分转载】:【lower_bound、upperbound讲解、二分查找、最长上升子序列(LIS)、最长下降子序列模版】

    二分 lower_bound lower_bound()在一个区间内进行二分查找,返回第一个大于等于目标值的位置(地址) upper_bound upper_bound()与lower_bound() ...

  8. 2.16 最长递增子序列 LIS

    [本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...

  9. 题解 最长上升子序列 LIS

    最长上升子序列 LIS Description 给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的 ...

  10. 一个数组求其最长递增子序列(LIS)

    一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...

随机推荐

  1. FormData自定义上传图片

    由于前段时间的项目中 涉及到图纸的上传 前端大神很随意的扔给我一个页面 让我自己修修改改 找了好几个素材站都没有找到合适的上传插件 最后不得已 用formdata 写了一个 顺便记录下吧 html 代 ...

  2. Java I/O---IO流的规律小结

    IO流的规律总结:解决的问题,就是开发中具体要使用哪个流对象的问题. 1,明确数据源,数据汇(数据目的) 其实就是在明确要使用的IO体系:字节流 InputStream & OutputStr ...

  3. bzoj 1835: [ZJOI2010]base 基站选址

    Description 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村庄 ...

  4. PredictionIO+Universal Recommender快速开发部署推荐引擎的问题总结(2)

    1, 对Universal Recommender进行pio build成功,但是却提示No engine found Building and delpoying model [INFO] [Eng ...

  5. js怎么防止变量冲突

    [1]工程师甲编写功能A ? 1 2 3 var a = 1; var b = 2; alert(a+b);//3 [2]工程师乙添加新功能B ? 1 2 3 var a = 2; var b = 1 ...

  6. Java集合(一) CopyOnWriteArrayList

    CopyOnWriteArrayList 类分析   1. CopyOnWriteArrayList 其中底层实现存放数据是一个Object数组:   private volatile transie ...

  7. win10下部署.Net Web项目到IIS10

    本问主要介绍如何将.Net Web项目部署到IIS10下面. 1.确保iis功能已开启 开启步骤如下:控制面板->程序 点击确定,ok,iis功能已开启. 2.打开iis,绑定站点到iis下面 ...

  8. CSS图片翻转动画技术详解

    因为不断有人问我,现在我补充一下:IE是支持这种技术的!尽管会很麻烦.需要做的是旋转front和back元素,而不是旋转整个容器元素.如果你使用的是最新版的IE,可以忽略这一节.IE10+是支持的,I ...

  9. Layout 不可思议(二)—— 两侧定宽的三列布局

    三列布局作为网页设计中最常见的布局,其实现方法早已被诸位前端大神摸透 网上相关的文章很多,原本已无必要再做赘述 不过既然开了 Layout 系列,三列布局就是必修课 本文整理了一些常用的实现方法,然后 ...

  10. python sklearn PCA源码阅读:参数n_components的设置(设为‘mle’出错的原因)

    在介绍n_components参数之前,首先贴一篇PCA参数详解的文章:http://www.cnblogs.com/akrusher/articles/6442549.html. 按照文章中对于n_ ...